第一篇:Pandas入门指南:掌握Python数据处理利器

简介: 欢迎来到我们的全新系列文章——Pandas数据分析系列!在这个系列中,我们将带您深入了解Pandas这个强大的Python库,探索其在数据分析领域的广泛应用和令人惊叹的功能。

301351688953494_.pic.jpg

作者: 西魏陶渊明
博客: https://blog.springlearn.cn/

天下代码一大抄, 抄来抄去有提高, 看你会抄不会抄!

欢迎来到我们的全新系列文章——Pandas数据分析系列!在这个系列中,我们将带您深入了解Pandas这个强大的Python库,探索其在数据分析领域的广泛应用和令人惊叹的功能。

无论您是一名初学者还是已经有一定数据分析经验的专业人士,本系列都将为您提供宝贵的知识和技巧。我们将逐步引导您了解Pandas的核心概念、基本操作和高级功能,帮助您快速掌握处理、清洗和分析大规模数据集的能力。

本系列文章还是引用之前的理念,阅读文章,你不需要记,只要知道这一篇在讲什么即可,收藏起来,用的时候过来抄代码。

系列文章:

第一篇:Pandas入门指南:掌握Python数据处理利器 【当前篇】

第二篇:数据探索与清洗:使用Pandas轻松预处理数据

第三篇:深入了解Pandas数据结构:Series与DataFrame

第四篇:数据选择与过滤:Pandas中的强大索引技巧

第五篇:数据操作与转换:学会利用Pandas处理复杂任务

@[toc]

一、本章重点

  1. 基础知识
    • Pandas是什么
    • 学会Pandas能做什么事情
    • 哪些人适合学习Pandas
  2. Pandas中数据结构
    • Series 结构
    • DataFrame 结构
  3. 入门操作之数据读取
    • 读取Excel数据
    • 读取CSV数据
    • 预览数据
    • 数据过滤
    • 数据排序
    • 缺失值处理

二、基础知识

2.1 Pandas是什么

在这里插入图片描述

PandasPython 中一只非常可爱的黑白熊猫,不,等等,抱歉,我搞错了!实际上,Pandas是一种用于数据处理和分析的强大Python库,而不是一个毛茸茸的动物。

想象一下,你面对着一大堆杂乱无章的数据,就像你家里那堆堆乱七八糟的袜子一样。你不知道从哪里开始整理,但又迫切需要找到其中的宝藏。这时候,Pandas就是你的超级整理大师!

Pandas像是一只巧妙而灵活的熊猫,它能够迅速抓取、转换和整理你的数据,让它们变得井井有条,就像是袜子被整齐地折叠放入抽屉一样。不仅如此,它还能帮助你轻松地过滤、排序和聚合数据。

Pandas会用简单直观的语法和操作让你愉快地与数据互动,就像是在跟一只可爱的小熊猫玩耍一样。当你与Pandas结伴而行时,你将发现数据处理和分析变得轻松有趣。

所以一句话: Pandas是Python领域中一个非常重要的数据处理的库。

在这里插入图片描述

2.2 学会Pandas能做什么事情

当然是处理数据了,这么说可能还是不直观。来吧下面举一个例子。
我有两个表格。

  • A表格
姓名 名称
孙悟空 齐天大圣
猪八戒 天蓬元帅
沙悟净 沙和尚
唐僧 唐三藏
  • B表格
姓名 职称
孙悟空 大师兄
猪八戒 通臂猪八戒
沙悟净 三师弟
唐僧 师傅

下面使用Pandas对数据继续关联。

import pandas as pd

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏']
}

# B表格数据
b_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '职称': ['大师兄', '二师兄', '三师弟', '师傅']
}

# 生成A表格的DataFrame
df_a = pd.DataFrame(a_data)

# 生成B表格的DataFrame
df_b = pd.DataFrame(b_data)

# 打印输出A表格的DataFrame
print("A表格的DataFrame:")
print(df_a)

# 打印输出B表格的DataFrame
print("\nB表格的DataFrame:")
print(df_b)


# 将A表格和B表格按照姓名进行合并
df_c = pd.merge(df_a, df_b, on='姓名')

# 打印输出C表格的DataFrame
print("C表格的DataFrame:")
print(df_c)

# C表格的DataFrame:
#     姓名    名称   职称
# 0  孙悟空  齐天大圣  大师兄
# 1  猪八戒  天蓬元帅  二师兄
# 2  沙悟净   沙和尚  三师弟
# 3   唐僧   唐三藏   师傅

这里我们只用了2个方法。

  • pd.DataFrame(b_data) 生成数据
  • pd.merge(df_a, df_b, on='姓名') 合并数据

这是小试牛刀,他能做的远远超过于此。数据的聚合,平均值等等操作都在后面呢。

2.3 那些人适合学习Pandas

  1. 如果你的身份是大学生,闲暇时间可以学习一下,不用太精通,只要知道就行,就好比看这篇文章,你不用记住这么多的代码,只要在哪里,知道怎么用即可!
  2. 业务分析师, 业务数据会汇总成各种Excel表格, 最终你需要对其进行分析,当然Excel也可以完成这项工作,但是如果你用Pandas你会发现事半功倍。一次编程, 反复使用,非常Nice。
  3. 数据科学家,那就不用看了,数据科学家不需要看文章学习。无师自通。

总结: 经常需要进行数据分析,或者是操作Excel工作的人群,建议学习。

三、Pandas中数据类型

对于有编程经验的人看这里:

  • Series 就是一个列表,就是一个数组,他是一个一维度的数据类型。
  • DataFrame 就是一个Map,字典,他是一个多维的数据类型。

对于有视频处理经验的人看这里:

  • Series 就像一个图片,是静态的,只能反映当前的图像
  • DataFrame 就像一个视频,有时间轴,能反应每一秒的图像

对于没有任何经验的看这里:

假设你是一个冰淇淋店的老板,你想要记录每天的销售数据。Series和DataFrame就像是你的销售记录本。

  • Series可以看作是一天中某个具体时刻的销售数据。比如,你可以创建一个"下午2点"的Series,其中包含不同口味冰淇淋的销售数量。这就像是你在销售记录本上记录了某个具体时刻的销售情况。
        香草    巧克力    草莓
下午27       6       3
  • DataFrame则是一整天的销售记录。它是一个包含多个Series的表格,每个Series代表一种销售数据。比如,你可以创建一个销售记录的DataFrame,其中每一列代表一种口味的冰淇淋,而每一行代表不同的时间点。
        香草    巧克力    草莓
上午105       3       2
下午27       6       3
晚上83       2       1

3.1 Series 类型

# 接下来,我们可以使用pd.Series()函数创建一个Series,
# 并传入一个包含数据的列表作为参数。为了模拟数据,我们可以使用随机生成的气温数值:
temperature_data = [25.3, 27.8, 23.5, 26.1, 24.9]

# ,我们可以使用pd.Series()来创建Series,并将其赋值给一个变量,例如temperature_series。同时,我们可以使用name参数为Series指定一个名称,比如"Temperature":
temperature_series = pd.Series(temperature_data, name='Temperature')

# 0    25.3
# 1    27.8
# 2    23.5
# 3    26.1
# 4    24.9
# Name: Temperature, dtype: float64
print(temperature_series)

3.2 DataFrame 类型

import pandas as pd

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏']
}
# 生成A表格的DataFrame
df_a = pd.DataFrame(a_data)

# 打印输出A表格的DataFrame
print("A表格的DataFrame:")
print(df_a)

# A表格的DataFrame:
#     姓名    名称
# 0  孙悟空  齐天大圣
# 1  猪八戒  天蓬元帅
# 2  沙悟净   沙和尚
# 3   唐僧   唐三藏

四、入门操作之数据读取

4.1 Excel文件读取

前面学习了DataFrame类型, Excel就是一个这样的类型。看下面的文件。

在这里插入图片描述
我这里有一个表格,是从第二行开始,然后从B列到C列。下面我们怎么读取这个表格,然后生成一个
DataFrame对象呢。


excel = pd.read_excel('./a.xlsx', skiprows=1, usecols=['姓名','名称'], sheet_name='Sheet1')

#     姓名    名称
# 0  孙悟空  齐天大圣
# 1  猪八戒  天蓬元帅
# 2  沙悟净   沙和尚
# 3   唐僧   唐三藏
print(excel)

4.2 CSV文件读取

CSV更是处理简单,首先我们先将刚才的excel转换成csv文件。

在这里插入图片描述

def excel_to_csv(excel_file, csv_file, sheet='Sheet1', excludeColums=[]):
    # 读取Excel文件
    df = pd.read_excel(excel_file, skiprows=1, usecols=['姓名', '名称'], sheet_name=sheet)
    if excludeColums:
        df = df.drop(excludeColums, axis=1)
    # 将数据保存为UTF-8编码的CSV文件
    df.to_csv(csv_file, encoding='utf-8', index=False)
    print(f"转换完成,已将Excel文件 '{excel_file}' 转换为CSV文件 '{csv_file}'")

excel_to_csv('./a.xlsx', './a.csv')

# 因为我们生成的csv文件,第一行就是,所以就不用跳过。也不用指定列。
csv = pd.read_csv('./a.csv')

#     姓名    名称
# 0  孙悟空  齐天大圣
# 1  猪八戒  天蓬元帅
# 2  沙悟净   沙和尚
# 3   唐僧   唐三藏
print(csv)

4.3 预览数据

有后端服务开发经验的同学会很容易上手,两个熟悉的命令,映入眼帘。

  • head
  • tail

可以指定要查看的数量,如果不指定默认看头5行,或者尾5行。

import pandas as pd

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏']
}

# 生成A表格的DataFrame
df_a = pd.DataFrame(a_data)
#
#     姓名    名称
# 0  孙悟空  齐天大圣
print(df_a.head(1))

#    姓名   名称
# 3  唐僧  唐三藏
print(df_a.tail(1))

4.4 数据过滤

我们给唐僧师徒增加上年龄属性,然后获取年龄小于100岁的人。

import pandas as pd

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏'],
    '年龄': [1500, 2000, 2000, 40]
}


# 生成A表格的DataFrame
df_a = pd.DataFrame(a_data)

# 获取年龄小于100岁的人
print(df_a[df_a['年龄'] < 100])

#    姓名   名称  年龄
# 3  唐僧  唐三藏  40

4.5 数据排序

我们按照年龄从小到大排序,这简直太简单了吧。

import pandas as pd

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏'],
    '年龄': [1500, 2000, 2000, 40]
}

# 生成A表格的DataFrame
df_a = pd.DataFrame(a_data)

#     姓名    名称    年龄
# 3   唐僧   唐三藏    40
# 0  孙悟空  齐天大圣  1500
# 1  猪八戒  天蓬元帅  2000
# 2  沙悟净   沙和尚  2000
print(df_a.sort_values(by='年龄'))

4.6 缺失值处理

如下我们将沙僧的年龄从2000改成NaN就是缺失值。
然后再生成DataFrame时候,指定如果缺失就填充-1


import pandas as pd
import numpy as np

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏'],
    '年龄': [1500, 2000, np.NAN, 40]
}

df_a = pd.DataFrame(a_data).fillna(-1)

#     姓名    名称      年龄
# 2  沙悟净   沙和尚    -1.0
# 3   唐僧   唐三藏    40.0
# 0  孙悟空  齐天大圣  1500.0
# 1  猪八戒  天蓬元帅  2000.0
print(df_a.sort_values(by='年龄'))

五、总结

  1. 本篇我们要了解一个重点,就是Pandas不仅可以处理一维数组,更可以处理二维数组
    比如Excel和CSV都是二维数据。
  2. 我们知道如何使用Pandas去文件数据,并也知道如何创建一个数据。

本节在读取Excel文件时候还留了一个小心机,不是从第一行第一列数据的,而是从中间处理的。
可以看到pandas都能灵活的通过参数配置去完成我们的任务。篇幅有限,实际上还有很多的小技巧。
比如说excel中数据没有列名, 而Pandas默认第一行都是列名,这种情况怎么处理呢?

本期内容就这么简单,因为是入门嘛, 后面我们还要学习各种函数,还有数学计算呢。
比如查看前两行数据用 head(2) 后两行用 tail(2) 读取某一列用 loc[:,'姓名'],等等等的。

更多小技巧我们后面学习,感兴趣的同学点个关注。


在本系列文章中,我们将从实战出发,深入探讨了Pandas数据分析库的众多功能和强大之处。掌握使用Pandas进行数据处理、清洗和分析的基本技巧。全系列课程均是免费。你的关注是我继续的动力。

相关文章
|
1天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
1天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
1天前
|
程序员 UED Python
Python入门:3.Python的输入和输出格式化
在 Python 编程中,输入与输出是程序与用户交互的核心部分。而输出格式化更是对程序表达能力的极大增强,可以让结果以清晰、美观且易读的方式呈现给用户。本文将深入探讨 Python 的输入与输出操作,特别是如何使用格式化方法来提升代码质量和可读性。
Python入门:3.Python的输入和输出格式化
|
1天前
|
机器学习/深度学习 人工智能 算法框架/工具
Python入门:1.Python介绍
Python是一种功能强大、易于学习和运行的解释型高级语言。由**Guido van Rossum**于1991年创建,Python以其简洁、易读和十分工程化的设计而带来了庞大的用户群体和丰富的应用场景。这个语言在全球范围内都被认为是**创新和效率的重要工具**。
Python入门:1.Python介绍
|
1天前
|
缓存 算法 数据处理
Python入门:9.递归函数和高阶函数
在 Python 编程中,函数是核心组成部分之一。递归函数和高阶函数是 Python 中两个非常重要的特性。递归函数帮助我们以更直观的方式处理重复性问题,而高阶函数通过函数作为参数或返回值,为代码增添了极大的灵活性和优雅性。无论是实现复杂的算法还是处理数据流,这些工具都在开发者的工具箱中扮演着重要角色。本文将从概念入手,逐步带你掌握递归函数、匿名函数(lambda)以及高阶函数的核心要领和应用技巧。
Python入门:9.递归函数和高阶函数
|
1天前
|
存储 SQL 索引
Python入门:7.Pythond的内置容器
Python 提供了强大的内置容器(container)类型,用于存储和操作数据。容器是 Python 数据结构的核心部分,理解它们对于写出高效、可读的代码至关重要。在这篇博客中,我们将详细介绍 Python 的五种主要内置容器:字符串(str)、列表(list)、元组(tuple)、字典(dict)和集合(set)。
Python入门:7.Pythond的内置容器
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
1天前
|
数据挖掘 数据处理 开发者
Pandas高级数据处理:实时数据处理
本文介绍了Pandas在实时数据处理中的应用,涵盖基础概念、常见问题及解决方案。Pandas是Python中强大的数据分析库,支持流式读取和增量更新数据,适用于大规模数据集的处理。通过分块读取、数据类型优化等方法,可有效解决内存不足等问题。文中还提供了代码示例,帮助读者更好地理解和掌握Pandas在实时数据处理中的使用技巧。
33 15
|
1天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
12 3
|
1天前
|
知识图谱 Python
Python入门:4.Python中的运算符
Python是一间强大而且便捷的编程语言,支持多种类型的运算符。在Python中,运算符被分为算术运算符、赋值运算符、复合赋值运算符、比较运算符和逻辑运算符等。本文将从基础到进阶进行分析,并通过一个综合案例展示其实际应用。

推荐镜像

更多