第一篇:Pandas入门指南:掌握Python数据处理利器

简介: 欢迎来到我们的全新系列文章——Pandas数据分析系列!在这个系列中,我们将带您深入了解Pandas这个强大的Python库,探索其在数据分析领域的广泛应用和令人惊叹的功能。

301351688953494_.pic.jpg

作者: 西魏陶渊明
博客: https://blog.springlearn.cn/

天下代码一大抄, 抄来抄去有提高, 看你会抄不会抄!

欢迎来到我们的全新系列文章——Pandas数据分析系列!在这个系列中,我们将带您深入了解Pandas这个强大的Python库,探索其在数据分析领域的广泛应用和令人惊叹的功能。

无论您是一名初学者还是已经有一定数据分析经验的专业人士,本系列都将为您提供宝贵的知识和技巧。我们将逐步引导您了解Pandas的核心概念、基本操作和高级功能,帮助您快速掌握处理、清洗和分析大规模数据集的能力。

本系列文章还是引用之前的理念,阅读文章,你不需要记,只要知道这一篇在讲什么即可,收藏起来,用的时候过来抄代码。

系列文章:

第一篇:Pandas入门指南:掌握Python数据处理利器 【当前篇】

第二篇:数据探索与清洗:使用Pandas轻松预处理数据

第三篇:深入了解Pandas数据结构:Series与DataFrame

第四篇:数据选择与过滤:Pandas中的强大索引技巧

第五篇:数据操作与转换:学会利用Pandas处理复杂任务

@[toc]

一、本章重点

  1. 基础知识
    • Pandas是什么
    • 学会Pandas能做什么事情
    • 哪些人适合学习Pandas
  2. Pandas中数据结构
    • Series 结构
    • DataFrame 结构
  3. 入门操作之数据读取
    • 读取Excel数据
    • 读取CSV数据
    • 预览数据
    • 数据过滤
    • 数据排序
    • 缺失值处理

二、基础知识

2.1 Pandas是什么

在这里插入图片描述

PandasPython 中一只非常可爱的黑白熊猫,不,等等,抱歉,我搞错了!实际上,Pandas是一种用于数据处理和分析的强大Python库,而不是一个毛茸茸的动物。

想象一下,你面对着一大堆杂乱无章的数据,就像你家里那堆堆乱七八糟的袜子一样。你不知道从哪里开始整理,但又迫切需要找到其中的宝藏。这时候,Pandas就是你的超级整理大师!

Pandas像是一只巧妙而灵活的熊猫,它能够迅速抓取、转换和整理你的数据,让它们变得井井有条,就像是袜子被整齐地折叠放入抽屉一样。不仅如此,它还能帮助你轻松地过滤、排序和聚合数据。

Pandas会用简单直观的语法和操作让你愉快地与数据互动,就像是在跟一只可爱的小熊猫玩耍一样。当你与Pandas结伴而行时,你将发现数据处理和分析变得轻松有趣。

所以一句话: Pandas是Python领域中一个非常重要的数据处理的库。

在这里插入图片描述

2.2 学会Pandas能做什么事情

当然是处理数据了,这么说可能还是不直观。来吧下面举一个例子。
我有两个表格。

  • A表格
姓名 名称
孙悟空 齐天大圣
猪八戒 天蓬元帅
沙悟净 沙和尚
唐僧 唐三藏
  • B表格
姓名 职称
孙悟空 大师兄
猪八戒 通臂猪八戒
沙悟净 三师弟
唐僧 师傅

下面使用Pandas对数据继续关联。

import pandas as pd

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏']
}

# B表格数据
b_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '职称': ['大师兄', '二师兄', '三师弟', '师傅']
}

# 生成A表格的DataFrame
df_a = pd.DataFrame(a_data)

# 生成B表格的DataFrame
df_b = pd.DataFrame(b_data)

# 打印输出A表格的DataFrame
print("A表格的DataFrame:")
print(df_a)

# 打印输出B表格的DataFrame
print("\nB表格的DataFrame:")
print(df_b)


# 将A表格和B表格按照姓名进行合并
df_c = pd.merge(df_a, df_b, on='姓名')

# 打印输出C表格的DataFrame
print("C表格的DataFrame:")
print(df_c)

# C表格的DataFrame:
#     姓名    名称   职称
# 0  孙悟空  齐天大圣  大师兄
# 1  猪八戒  天蓬元帅  二师兄
# 2  沙悟净   沙和尚  三师弟
# 3   唐僧   唐三藏   师傅

这里我们只用了2个方法。

  • pd.DataFrame(b_data) 生成数据
  • pd.merge(df_a, df_b, on='姓名') 合并数据

这是小试牛刀,他能做的远远超过于此。数据的聚合,平均值等等操作都在后面呢。

2.3 那些人适合学习Pandas

  1. 如果你的身份是大学生,闲暇时间可以学习一下,不用太精通,只要知道就行,就好比看这篇文章,你不用记住这么多的代码,只要在哪里,知道怎么用即可!
  2. 业务分析师, 业务数据会汇总成各种Excel表格, 最终你需要对其进行分析,当然Excel也可以完成这项工作,但是如果你用Pandas你会发现事半功倍。一次编程, 反复使用,非常Nice。
  3. 数据科学家,那就不用看了,数据科学家不需要看文章学习。无师自通。

总结: 经常需要进行数据分析,或者是操作Excel工作的人群,建议学习。

三、Pandas中数据类型

对于有编程经验的人看这里:

  • Series 就是一个列表,就是一个数组,他是一个一维度的数据类型。
  • DataFrame 就是一个Map,字典,他是一个多维的数据类型。

对于有视频处理经验的人看这里:

  • Series 就像一个图片,是静态的,只能反映当前的图像
  • DataFrame 就像一个视频,有时间轴,能反应每一秒的图像

对于没有任何经验的看这里:

假设你是一个冰淇淋店的老板,你想要记录每天的销售数据。Series和DataFrame就像是你的销售记录本。

  • Series可以看作是一天中某个具体时刻的销售数据。比如,你可以创建一个"下午2点"的Series,其中包含不同口味冰淇淋的销售数量。这就像是你在销售记录本上记录了某个具体时刻的销售情况。
        香草    巧克力    草莓
下午27       6       3
  • DataFrame则是一整天的销售记录。它是一个包含多个Series的表格,每个Series代表一种销售数据。比如,你可以创建一个销售记录的DataFrame,其中每一列代表一种口味的冰淇淋,而每一行代表不同的时间点。
        香草    巧克力    草莓
上午105       3       2
下午27       6       3
晚上83       2       1

3.1 Series 类型

# 接下来,我们可以使用pd.Series()函数创建一个Series,
# 并传入一个包含数据的列表作为参数。为了模拟数据,我们可以使用随机生成的气温数值:
temperature_data = [25.3, 27.8, 23.5, 26.1, 24.9]

# ,我们可以使用pd.Series()来创建Series,并将其赋值给一个变量,例如temperature_series。同时,我们可以使用name参数为Series指定一个名称,比如"Temperature":
temperature_series = pd.Series(temperature_data, name='Temperature')

# 0    25.3
# 1    27.8
# 2    23.5
# 3    26.1
# 4    24.9
# Name: Temperature, dtype: float64
print(temperature_series)

3.2 DataFrame 类型

import pandas as pd

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏']
}
# 生成A表格的DataFrame
df_a = pd.DataFrame(a_data)

# 打印输出A表格的DataFrame
print("A表格的DataFrame:")
print(df_a)

# A表格的DataFrame:
#     姓名    名称
# 0  孙悟空  齐天大圣
# 1  猪八戒  天蓬元帅
# 2  沙悟净   沙和尚
# 3   唐僧   唐三藏

四、入门操作之数据读取

4.1 Excel文件读取

前面学习了DataFrame类型, Excel就是一个这样的类型。看下面的文件。

在这里插入图片描述
我这里有一个表格,是从第二行开始,然后从B列到C列。下面我们怎么读取这个表格,然后生成一个
DataFrame对象呢。


excel = pd.read_excel('./a.xlsx', skiprows=1, usecols=['姓名','名称'], sheet_name='Sheet1')

#     姓名    名称
# 0  孙悟空  齐天大圣
# 1  猪八戒  天蓬元帅
# 2  沙悟净   沙和尚
# 3   唐僧   唐三藏
print(excel)

4.2 CSV文件读取

CSV更是处理简单,首先我们先将刚才的excel转换成csv文件。

在这里插入图片描述

def excel_to_csv(excel_file, csv_file, sheet='Sheet1', excludeColums=[]):
    # 读取Excel文件
    df = pd.read_excel(excel_file, skiprows=1, usecols=['姓名', '名称'], sheet_name=sheet)
    if excludeColums:
        df = df.drop(excludeColums, axis=1)
    # 将数据保存为UTF-8编码的CSV文件
    df.to_csv(csv_file, encoding='utf-8', index=False)
    print(f"转换完成,已将Excel文件 '{excel_file}' 转换为CSV文件 '{csv_file}'")

excel_to_csv('./a.xlsx', './a.csv')

# 因为我们生成的csv文件,第一行就是,所以就不用跳过。也不用指定列。
csv = pd.read_csv('./a.csv')

#     姓名    名称
# 0  孙悟空  齐天大圣
# 1  猪八戒  天蓬元帅
# 2  沙悟净   沙和尚
# 3   唐僧   唐三藏
print(csv)

4.3 预览数据

有后端服务开发经验的同学会很容易上手,两个熟悉的命令,映入眼帘。

  • head
  • tail

可以指定要查看的数量,如果不指定默认看头5行,或者尾5行。

import pandas as pd

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏']
}

# 生成A表格的DataFrame
df_a = pd.DataFrame(a_data)
#
#     姓名    名称
# 0  孙悟空  齐天大圣
print(df_a.head(1))

#    姓名   名称
# 3  唐僧  唐三藏
print(df_a.tail(1))

4.4 数据过滤

我们给唐僧师徒增加上年龄属性,然后获取年龄小于100岁的人。

import pandas as pd

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏'],
    '年龄': [1500, 2000, 2000, 40]
}


# 生成A表格的DataFrame
df_a = pd.DataFrame(a_data)

# 获取年龄小于100岁的人
print(df_a[df_a['年龄'] < 100])

#    姓名   名称  年龄
# 3  唐僧  唐三藏  40

4.5 数据排序

我们按照年龄从小到大排序,这简直太简单了吧。

import pandas as pd

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏'],
    '年龄': [1500, 2000, 2000, 40]
}

# 生成A表格的DataFrame
df_a = pd.DataFrame(a_data)

#     姓名    名称    年龄
# 3   唐僧   唐三藏    40
# 0  孙悟空  齐天大圣  1500
# 1  猪八戒  天蓬元帅  2000
# 2  沙悟净   沙和尚  2000
print(df_a.sort_values(by='年龄'))

4.6 缺失值处理

如下我们将沙僧的年龄从2000改成NaN就是缺失值。
然后再生成DataFrame时候,指定如果缺失就填充-1


import pandas as pd
import numpy as np

# A表格数据
a_data = {
   
   
    '姓名': ['孙悟空', '猪八戒', '沙悟净', '唐僧'],
    '名称': ['齐天大圣', '天蓬元帅', '沙和尚', '唐三藏'],
    '年龄': [1500, 2000, np.NAN, 40]
}

df_a = pd.DataFrame(a_data).fillna(-1)

#     姓名    名称      年龄
# 2  沙悟净   沙和尚    -1.0
# 3   唐僧   唐三藏    40.0
# 0  孙悟空  齐天大圣  1500.0
# 1  猪八戒  天蓬元帅  2000.0
print(df_a.sort_values(by='年龄'))

五、总结

  1. 本篇我们要了解一个重点,就是Pandas不仅可以处理一维数组,更可以处理二维数组
    比如Excel和CSV都是二维数据。
  2. 我们知道如何使用Pandas去文件数据,并也知道如何创建一个数据。

本节在读取Excel文件时候还留了一个小心机,不是从第一行第一列数据的,而是从中间处理的。
可以看到pandas都能灵活的通过参数配置去完成我们的任务。篇幅有限,实际上还有很多的小技巧。
比如说excel中数据没有列名, 而Pandas默认第一行都是列名,这种情况怎么处理呢?

本期内容就这么简单,因为是入门嘛, 后面我们还要学习各种函数,还有数学计算呢。
比如查看前两行数据用 head(2) 后两行用 tail(2) 读取某一列用 loc[:,'姓名'],等等等的。

更多小技巧我们后面学习,感兴趣的同学点个关注。


在本系列文章中,我们将从实战出发,深入探讨了Pandas数据分析库的众多功能和强大之处。掌握使用Pandas进行数据处理、清洗和分析的基本技巧。全系列课程均是免费。你的关注是我继续的动力。

相关文章
|
8天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
9天前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
38 11
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
5天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
5天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
5天前
|
设计模式 缓存 开发框架
Python中的装饰器:从入门到实践####
本文深入探讨了Python中装饰器的工作原理与应用,通过具体案例展示了如何利用装饰器增强函数功能、提高代码复用性和可读性。读者将学习到装饰器的基本概念、实现方法及其在实际项目开发中的实用技巧。 ####
18 3
|
8天前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。
|
7天前
|
机器学习/深度学习 数据挖掘 开发者
Python编程入门:理解基础语法与编写第一个程序
【10月更文挑战第37天】本文旨在为初学者提供Python编程的初步了解,通过简明的语言和直观的例子,引导读者掌握Python的基础语法,并完成一个简单的程序。我们将从变量、数据类型到控制结构,逐步展开讲解,确保即使是编程新手也能轻松跟上。文章末尾附有完整代码示例,供读者参考和实践。
|
7天前
|
人工智能 数据挖掘 程序员
Python编程入门:从零到英雄
【10月更文挑战第37天】本文将引导你走进Python编程的世界,无论你是初学者还是有一定基础的开发者,都能从中受益。我们将从最基础的语法开始讲解,逐步深入到更复杂的主题,如数据结构、面向对象编程和网络编程等。通过本文的学习,你将能够编写出自己的Python程序,实现各种功能。让我们一起踏上Python编程之旅吧!
|
8天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。