分布式数据库HBase的基本概念和架构之基本数据模型的Cell

简介: HBase是一个分布式数据库系统,基于Google的Bigtable和Apache Hadoop的HDFS构建而成。它是一个分布式数据库的NoSQL数据库,主要用于存储和处理海量数据。HBase的核心特性包括高可用性、高性能和高伸缩性。在阿里云开发者社区中,我们将介绍HBase的基本概念和架构,以及它的基本数据模型Cell。


HBase的基本数据模型Cell

HBase的基本数据模型是Cell。Cell是一个表格的单元,用于存储数据。每一行都有一个唯一的行键,用于标识它。行键由一个或多个列族组成,列族是一组相关列的集合。列族中的每一列都有一个唯一的列名,用于标识它。

Cell的结构

Cell由一个或多个表分区组成。表分区是按列进行分区的,每个表分区都有自己的列族和行键。表分区的概念使得HBase可以在不同的机器上存储数据,从而实现高伸缩性和高可用性。

Cell的操作

HBase提供了多种操作Cell的API,包括插入、更新、删除和查询等操作。HBase使用行键来定位数据,可以使用RowKey的范围查询来获取特定范围内的数据。

HBase的基本概念和架构

HBase是一个分布式数据库系统,它的核心特性包括高可用性、高性能和高伸缩性。HBase使用HDFS作为底层存储,可以在大量数据上运行。HBase使用Zookeeper来管理节点和客户端之间的协作,保证系统的可靠性和容错性。

高可用性

HBase使用主从复制和分布式锁来实现高可用性。主节点负责接受写操作并将其复制到从节点,从节点负责接受读操作。分布式锁用于保证并发访问的安全性。

高性能

HBase使用列存储和自动RowKey压缩来实现高性能。列存储可以减少磁盘I/O,提高查询效率。自动RowKey压缩可以减少磁盘空间占用,提高I/O性能。

高伸缩性

HBase使用分布式架构来实现高伸缩性。HBase可以在多台机器上分布式存储数据,使用多线程和多核来提高性能。

总结

HBase是一个分布式数据库系统,它的基本数据模型是Cell,用于存储数据。HBase的核心特性包括高可用性、高性能和高伸缩性。HBase使用HDFS作为底层存储,可以在大量数据上运行。HBase使用Zookeeper来管理节点和客户端之间的协作,保证系统的可靠性和容错性。

目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 监控
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
大型动作模型(LAMs)作为人工智能新架构,融合神经网络与符号逻辑,实现企业重复任务的自动化处理。通过神经符号集成、动作执行管道、模式学习、任务分解等核心技术,系统可高效解析用户意图并执行复杂操作,显著提升企业运营效率并降低人工成本。其自适应学习能力与上下文感知机制,使自动化流程更智能、灵活,为企业数字化转型提供坚实支撑。
300 0
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
|
4月前
|
存储 BI Shell
Doris基础-架构、数据模型、数据划分
Apache Doris 是一款高性能、实时分析型数据库,基于MPP架构,支持高并发查询与复杂分析。其前身是百度的Palo项目,现为Apache顶级项目。Doris适用于报表分析、数据仓库构建、日志检索等场景,具备存算一体与存算分离两种架构,灵活适应不同业务需求。它提供主键、明细和聚合三种数据模型,便于高效处理更新、存储与统计汇总操作,广泛应用于大数据分析领域。
517 2
|
1月前
|
算法 NoSQL 关系型数据库
《聊聊分布式》分布式系统核心概念
分布式系统由多节点协同工作,突破单机瓶颈,提升可用性与扩展性。CAP定理指出一致性、可用性、分区容错性三者不可兼得,BASE理论通过基本可用、软状态、最终一致性实现工程平衡,共识算法如Raft保障数据一致与系统可靠。
|
2月前
|
数据采集 机器学习/深度学习 搜索推荐
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
MIT与丰田研究院研究发现,扩散模型的“局部性”并非源于网络架构的精巧设计,而是自然图像统计规律的产物。通过线性模型仅学习像素相关性,即可复现U-Net般的局部敏感模式,揭示数据本身蕴含生成“魔法”。
152 3
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
|
1月前
|
存储 监控 算法
117_LLM训练的高效分布式策略:从数据并行到ZeRO优化
在2025年,大型语言模型(LLM)的规模已经达到了数千亿甚至数万亿参数,训练这样的庞然大物需要先进的分布式训练技术支持。本文将深入探讨LLM训练中的高效分布式策略,从基础的数据并行到最先进的ZeRO优化技术,为读者提供全面且实用的技术指南。
|
1月前
|
机器学习/深度学习 存储 缓存
115_LLM基础模型架构设计:从Transformer到稀疏注意力
大型语言模型(LLM)的架构设计是其性能的核心决定因素。从2017年Transformer架构的提出,到如今的稀疏注意力和混合专家模型,LLM架构经历了快速的演进。本文将全面探讨LLM基础架构的设计原理,深入分析Transformer的核心机制,详细介绍稀疏注意力、MoE等创新架构,并展望未来架构发展方向。通过数学推导和实践案例,为构建高效、强大的LLM提供全面指导。
|
1月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
3月前
|
编解码 文字识别 自然语言处理
Dots.ocr:告别复杂多模块架构,1.7B参数单一模型统一处理所有OCR任务22
Dots.ocr 是一款仅1.7B参数的视觉语言模型,正在重塑文档处理技术。它将布局检测、文本识别、阅读顺序理解和数学公式解析等任务统一于单一架构,突破传统OCR多模块流水线的限制。在多项基准测试中,其表现超越大参数模型,展现出“小而精”的实用价值,标志着OCR技术向高效、统一、灵活方向演进。
474 0
Dots.ocr:告别复杂多模块架构,1.7B参数单一模型统一处理所有OCR任务22
|
4月前
|
存储 人工智能 调度
上海创智学院联合无问芯穹发布Megrez2.0,本征架构突破端模型不可能三角,以终端算力撬动云端智能
终端是实现数字智能和生命智能自由交互的重要接口,持续帮助人类拓展生产能力的边界。当下,终端智能面临着“能效-空间-智能”的不可能三角:以DeepSeek-R1为例,其参数规模高达6710亿,超出了大部分笔记本电脑的内存容量;即使勉强在一台笔记本电脑上成功运行满血版模型,理论上坚持不到9分钟就会耗尽电池;如果通过蒸馏,将满血版模型压缩到更小尺寸,此时的精度损失又可能满足不了智能水平的要求。
114 0
上海创智学院联合无问芯穹发布Megrez2.0,本征架构突破端模型不可能三角,以终端算力撬动云端智能
|
4月前
|
人工智能 监控 API
MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
本文产品专家三桥君探讨了以 MCP 为核心的 AI 应用架构设计,从统一接入、数据管理、服务编排到部署策略等维度,系统化分析了 AI 落地的关键环节。重点介绍了 API 网关的多终端适配、数据异步处理流程、LLM 服务的灰度发布与 Fallback 机制,以及 MCP Server 作为核心枢纽的调度功能。同时对比了公有云 API、私有化 GPU 和无服务器部署的适用场景,强调通过全链路监控与智能告警保障系统稳定性。该架构为企业高效整合 AI 能力提供了实践路径,平衡性能、成本与灵活性需求。
279 0

热门文章

最新文章