4.5 x64dbg 探索钩子劫持技术

简介: 钩子劫持技术是计算机编程中的一种技术,它们可以让开发者拦截系统函数或应用程序函数的调用,并在函数调用前或调用后执行自定义代码,钩子劫持技术通常用于病毒和恶意软件,也可以让开发者扩展或修改系统函数的功能,从而提高软件的性能和增加新功能。钩子劫持技术的实现一般需要在对端内存中通过`create_alloc()`函数准备一块空间,并通过`assemble_write_memory()`函数,将一段汇编代码转为机器码,并循环写出自定义指令集到堆中,函数`write_opcode_from_assemble()`就是我们自己实现的,该函数传入一个汇编指令列表,自动转为机器码并写出到堆内,函数的核心代码如

钩子劫持技术是计算机编程中的一种技术,它们可以让开发者拦截系统函数或应用程序函数的调用,并在函数调用前或调用后执行自定义代码,钩子劫持技术通常用于病毒和恶意软件,也可以让开发者扩展或修改系统函数的功能,从而提高软件的性能和增加新功能。

4.5.1 探索反汇编写出函数原理

钩子劫持技术的实现一般需要在对端内存中通过create_alloc()函数准备一块空间,并通过assemble_write_memory()函数,将一段汇编代码转为机器码,并循环写出自定义指令集到堆中,函数write_opcode_from_assemble()就是我们自己实现的,该函数传入一个汇编指令列表,自动转为机器码并写出到堆内,函数的核心代码如下所示。

def write_opcode_from_assemble(dbg_ptr,asm_list):
    addr_count = 0
    addr = dbg_ptr.create_alloc(1024)
    if addr != 0:
        for index in asm_list:
            asm_size = dbg_ptr.assemble_code_size(index)
            if asm_size != 0:
                # print("长度: {}".format(asm_size))
                write = dbg_ptr.assemble_write_memory(addr + addr_count, index)
                if write == True:
                    addr_count = addr_count + asm_size
                else:
                    dbg_ptr.delete_alloc(addr)
                    return 0
            else:
                dbg_ptr.delete_alloc(addr)
                return 0
    else:
        return 0
    return addr

我们以写出一段MessageBox弹窗代码为例,首先通过get_module_from_function函数获取到位于user32.dll模块内MessageBoxA的函数地址,该函数的栈传参数为五个,其中前四个为push压栈,最后一个则是调用call,为了构建这个指令集需要在asm_list写出所需参数列表及调用函数地址,并通过set_local_protect设置可执行属性,通过set_register将当前EIP设置到写出位置,并执行程序。

from LyScript32 import MyDebug

def write_opcode_from_assemble(dbg_ptr,asm_list):
              pass

if __name__ == "__main__":
    dbg = MyDebug()
    dbg.connect()

    # 得到messagebox内存地址
    msg_ptr = dbg.get_module_from_function("user32.dll","MessageBoxA")
    call = "call {}".format(str(hex(msg_ptr)))
    print("函数地址: {}".format(call))

    # 写出指令集到内存
    asm_list = ['push 0','push 0','push 0','push 0',call]
    write_addr = write_opcode_from_assemble(dbg,asm_list)
    print("写出地址: {}".format(hex(write_addr)))

    # 设置执行属性
    dbg.set_local_protect(write_addr,32,1024)

    # 将EIP设置到指令集位置
    dbg.set_register("eip",write_addr)

    # 执行代码
    dbg.set_debug("Run")
    dbg.close()

运行上述代码片段,则首先会在0x3130000的位置处写出调用MessageBox的指令集。

当执行set_debug("Run")则会执行如下图所示代码,这些代码则是经过填充的,由于此处仅仅只是一个演示案例,所以不具备任何实战性,读者在该案例中学会指令的替换是如何实现的即可;

4.5.2 实现Hook改写MsgBox弹窗

在之前的内容中笔者通过封装write_opcode_from_assemble函数实现了自定义写出内存的功能,本章将继续探索Hook劫持技术的实现原理,如下案例中我们先来实现一个Hook通用模板,在代码中实现中转机制,代码中以MessageBoxA函数为案例实现修改汇编参数传递。

from LyScript32 import MyDebug

# 传入汇编列表,写出到内存
def assemble(dbg, address=0, asm_list=[]):
    asm_len_count = 0
    for index in range(0,len(asm_list)):
        # 写出到内存
        dbg.assemble_at(address, asm_list[index])
        # print("地址: {} --> 长度计数器: {} --> 写出: {}".format(hex(address + asm_len_count), asm_len_count,asm_list[index]))
        # 得到asm长度
        asm_len_count = dbg.assemble_code_size(asm_list[index])
        # 地址每次递增
        address = address + asm_len_count

if __name__ == "__main__":
    dbg = MyDebug()
    connect_flag = dbg.connect()
    print("连接状态: {}".format(connect_flag))

    # 找到MessageBoxA
    messagebox_address = dbg.get_module_from_function("user32.dll","MessageBoxA")
    print("MessageBoxA内存地址 = {}".format(hex(messagebox_address)))

    # 分配空间
    HookMem = dbg.create_alloc(1024)
    print("自定义内存空间: {}".format(hex(HookMem)))

    # 写出MessageBoxA内存地址,跳转地址
    asm = [
        f"push {hex(HookMem)}",
        "ret"
    ]

    # 将列表中的汇编指令写出到内存
    assemble(dbg,messagebox_address,asm)

    dbg.close()

如上代码中,通过找到user32.dll库中的MessageBoxA函数,并返回其内存地址。接着,程序会分配1024字节大小的自定义内存空间,获取刚刚写入的内存地址,并将其写入到MessageBoxA函数的内存地址中,代码运行后读者可看到如下图所示的提示信息;

提示:解释一下为什么需要增加asm列表中的指令集,此处的指令集作用只有一个那就是跳转,当原始MessageBoxA函数被调用时,则此处通过push;ret的组合跳转到我们自定义的HookMem内存空间中,而此内存空间中后期则需要填充我们自己的弹窗代码片段,所以需要提前通过HookMem = dbg.create_alloc(1024)构建出这段内存区域;

由于MessageBox弹窗需要使用两个变量这两个变量依次代表标题和内容,所以我们通过create_alloc函数在对端内存中分配两块堆空间,并依次将弹窗字符串通过write_memory_byte写出到内存中,至此弹窗内容也算填充好了,其中txt代表标题,而box则代表内容;

    # 定义两个变量,存放字符串
    MsgBoxAddr = dbg.create_alloc(512)
    MsgTextAddr = dbg.create_alloc(512)

    # 填充字符串内容
    # lyshark 标题
    txt = [0x6c, 0x79, 0x73, 0x68, 0x61, 0x72, 0x6b]
    # 内容 lyshark.com
    box = [0x6C, 0x79, 0x73, 0x68, 0x61, 0x72, 0x6B, 0x2E, 0x63, 0x6F, 0x6D]

    for txt_count in range(0,len(txt)):
        dbg.write_memory_byte(MsgBoxAddr + txt_count, txt[txt_count])

    for box_count in range(0,len(box)):
        dbg.write_memory_byte(MsgTextAddr + box_count, box[box_count])

    print("标题地址: {} 内容: {}".format(hex(MsgBoxAddr),hex(MsgTextAddr)))

紧接着,我们需要跳转到MessageBoxA函数所在内存中,并提取出该函数调用时的核心汇编指令集,如下图所示则是弹窗的具体实现流程;

而对于一个完整的弹窗来说,只需要提取出核心代码即可不必提取所有指令集,但需要注意的是图中的call 0x75B20E20地址需要进行替换,根据系统的不同此处的地址也不会相同,在提取时需要格外注意;

    # 此处是MessageBox替换后的片段
    PatchCode =\
    [
        "mov edi, edi",
        "push ebp",
        "mov ebp,esp",
        "push -1",
        "push 0",
        "push dword ptr ss:[ebp+0x14]",
        f"push {hex(MsgBoxAddr)}",
        f"push {hex(MsgTextAddr)}",
        "push dword ptr ss:[ebp+0x8]",
        "call 0x75B20E20",
        "pop ebp",
        "ret 0x10"
    ]

    # 写出到自定义内存
    assemble(dbg, HookMem, PatchCode)

如上则是替换弹窗的代码解释,将这段代码整合在一起,读者则可实现一段替换弹窗功能的代码,如下弹窗中的消息替换成我们自己的版权信息,此处完整代码实现如下所示;

from LyScript32 import MyDebug

# 传入汇编列表,写出到内存
def assemble(dbg, address=0, asm_list=[]):
    asm_len_count = 0
    for index in range(0,len(asm_list)):
        # 写出到内存
        dbg.assemble_at(address, asm_list[index])
        # print("地址: {} --> 长度计数器: {} --> 写出: {}".format(hex(address + asm_len_count), asm_len_count,asm_list[index]))
        # 得到asm长度
        asm_len_count = dbg.assemble_code_size(asm_list[index])
        # 地址每次递增
        address = address + asm_len_count

if __name__ == "__main__":
    dbg = MyDebug()
    connect_flag = dbg.connect()
    print("连接状态: {}".format(connect_flag))

    # 找到MessageBoxA
    messagebox_address = dbg.get_module_from_function("user32.dll","MessageBoxA")
    print("MessageBoxA内存地址 = {}".format(hex(messagebox_address)))

    # 分配空间
    HookMem = dbg.create_alloc(1024)
    print("自定义内存空间: {}".format(hex(HookMem)))

    # 写出FindWindowA内存地址,跳转地址
    asm = [
        f"push {hex(HookMem)}",
        "ret"
    ]

    # 将列表中的汇编指令写出到内存
    assemble(dbg,messagebox_address,asm)

    # 定义两个变量,存放字符串
    MsgBoxAddr = dbg.create_alloc(512)
    MsgTextAddr = dbg.create_alloc(512)

    # 填充字符串内容
    # lyshark 标题
    txt = [0x6c, 0x79, 0x73, 0x68, 0x61, 0x72, 0x6b]
    # 内容 lyshark.com
    box = [0x6C, 0x79, 0x73, 0x68, 0x61, 0x72, 0x6B, 0x2E, 0x63, 0x6F, 0x6D]

    for txt_count in range(0,len(txt)):
        dbg.write_memory_byte(MsgBoxAddr + txt_count, txt[txt_count])

    for box_count in range(0,len(box)):
        dbg.write_memory_byte(MsgTextAddr + box_count, box[box_count])

    print("标题地址: {} 内容: {}".format(hex(MsgBoxAddr),hex(MsgTextAddr)))

    # 此处是MessageBox替换后的片段
    PatchCode =\
    [
        "mov edi, edi",
        "push ebp",
        "mov ebp,esp",
        "push -1",
        "push 0",
        "push dword ptr ss:[ebp+0x14]",
        f"push {hex(MsgBoxAddr)}",
        f"push {hex(MsgTextAddr)}",
        "push dword ptr ss:[ebp+0x8]",
        "call 0x75B20E20",
        "pop ebp",
        "ret 0x10"
    ]

    # 写出到自定义内存
    assemble(dbg, HookMem, PatchCode)

    print("地址已被替换,可以运行了.")
    dbg.set_debug("Run")
    dbg.set_debug("Run")

    dbg.close()

当如上代码被运行后,则会替换进程内MessageBoxA函数为我们自己的地址,运行输出效果如下图所示;

读者可通过Ctrl+G并输入MessageBoxA跳转到原函数弹窗位置,此时输出的则是一个跳转地址0x6C0000该地址则代表我们自己的自定义内存区域,如下图所示;

继续跟进这内存区域,读者可看到我们自己构建的MessageBoxA弹窗的核心代码片段,当这段代码被执行结束后则通过ret会返回到程序领空,如下图所示;

至此,当用户再次打开弹窗按钮时,则不会提示原始内容,而是提示自定义弹窗,如下图所示;

原文地址

https://www.lyshark.com/post/6b7ca168.html

相关文章
|
8月前
|
JavaScript 前端开发 API
「深入探究Web页面生命周期:DOMContentLoaded、load、beforeunload和unload事件」
在 Web 开发中,了解页面生命周期是非常重要的。页面生命周期定义了页面从加载到卸载的整个过程,包括各种事件和阶段。在本文中,我们将详细介绍四个关键事件:DOMContentLoaded、load、beforeunload 和 unload。我们将探讨这些事件的属性、API、应用场景,并提供一些代码示例和参考资料。
|
存储 安全 Java
4.7 x64dbg 应用层的钩子扫描
所谓的应用层钩子(Application-level hooks)是一种编程技术,它允许应用程序通过在特定事件发生时执行特定代码来自定义或扩展其行为。这些事件可以是用户交互,系统事件,或者其他应用程序内部的事件。应用层钩子是在应用程序中添加自定义代码的一种灵活的方式。它们可以用于许多不同的用途,如安全审计、性能监视、访问控制和行为修改等。应用层钩子通常在应用程序的运行时被调用,可以执行一些预定义的操作或触发一些自定义代码。
124 0
4.7 x64dbg 应用层的钩子扫描
|
安全 Windows
4.4 x64dbg 绕过反调试保护机制
在Windows平台下,应用程序为了保护自己不被调试器调试会通过各种方法限制进程调试自身,通常此类反调试技术会限制我们对其进行软件逆向与漏洞分析,我们以第一种`IsDebuggerPresent`反调试为例,该函数用于检查当前程序是否在调试器的环境下运行。函数返回一个布尔值,如果当前程序正在被调试,则返回True,否则返回False。函数通过检查特定的内存地址来判断是否有调试器在运行。具体来说,该函数检查了`PEB(进程环境块)`数据结构中的`_PEB_LDR_DATA`字段,该字段标识当前程序是否处于调试状态。如果该字段的值为1,则表示当前程序正在被调试,否则表示当前程序没有被调试。
341 0
4.4 x64dbg 绕过反调试保护机制
|
JSON 测试技术 数据格式
07-Httprunner-hook机制
07-Httprunner-hook机制
|
前端开发
前端hook项目pc总结笔记-hook项目文件自定义扎号onchange事件
前端hook项目pc总结笔记-hook项目文件自定义扎号onchange事件
90 0
|
监控
钩子 (Hook)
钩子 (Hook)
234 1
hook再读4-useeffect使用2监听清除
hook再读4-useeffect使用2监听清除
110 0
hook再读4-useeffect使用2监听清除
|
前端开发 JavaScript Windows
JavaScript中的钩子(钩子机制\钩子函数\hook)是什么?
我们前端的JavaScript中,经常提到钩子,毋庸置疑,那这个东西肯定也尤为重要。
260 0
|
消息中间件 C++ Windows
c++ hook 钩子的使用介绍
一、基本概念:     钩子(Hook),是Windows消息处理机制的一个平台,应用程序可以在上面设置子程以监视指定窗口的某种消息,而且所监视的窗口可以是其他进程所创建的。当消息到达后,在目标窗口处理函数之前处理它。
2687 0