m基于形态学处理的医学连续图像血球目标跟踪提取算法matlab仿真

简介: m基于形态学处理的医学连续图像血球目标跟踪提取算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

b19b2ebe63d7279ea1e3902d5877c57a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
05ab9099be1f8b651a734470fcaacdd8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b7bb2e51f4c96663c0514d2d79cd6e17_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
医学图像处理是近年来受到广泛研究的领域之一。在医学诊断中,图像处理技术能够大大提高医生的诊断准确性和效率。其中,血球目标的跟踪提取是医学图像处理中的一个重要问题。本文将介绍一种基于形态学处理的医学连续图像血球目标跟踪提取方法。

1、血球目标跟踪提取的背景

   血球目标跟踪提取是医学图像处理中的一个重要问题。血球目标是指在血液中的不同类型的细胞,例如红细胞、白细胞、血小板等。在医学诊断中,对血球目标进行跟踪提取能够帮助医生进行疾病的诊断和治疗。例如,在白血病的治疗中,对血液中的白细胞进行跟踪提取能够帮助医生了解病情的发展情况。

   目前,血球目标的跟踪提取主要依靠复杂的图像处理算法。这些算法通常需要对图像进行预处理、分割、特征提取等多个步骤。其中,形态学处理是一种非常常见的图像处理技术,它能够对图像进行形态学操作,例如膨胀、腐蚀、开运算、闭运算等。形态学处理能够对图像进行形态学变换,从而实现对图像的分割和特征提取。

2、基于形态学处理的医学连续图像血球目标跟踪提取方法

     一种基于形态学处理的医学连续图像血球目标跟踪提取方法。该方法主要包括以下步骤:预处理、形态学分割、形态学特征提取、血球目标跟踪等。

2.1 预处理

   在进行形态学处理之前,需要对图像进行一些预处理。预处理包括图像去噪、图像平滑等步骤。图像去噪可以使用一些常见的去噪算法,例如中值滤波、均值滤波等。图像平滑可以使用高斯滤波等平滑算法。通过预处理,能够去除图像中的噪声和不必要的细节,从而提高形态学处理的效果。

2.2 形态学分割

 形态学分割是对图像进行形态学处理的过程。形态学分割通常使用形态学操作进行,例如膨胀、腐蚀、开运算、闭运算等。在文中,我们采用了开运算和闭运算两种形态学操作进行分割。开运算是指对图像进行先腐蚀后膨胀的形态学操作。开运算能够去除图像中的小物体和细节,从而提取出较大的目标。闭运算是指对图像进行先膨胀后腐蚀的形态学操作。闭运算能够填补图像中的空洞和断裂,从而提取出较小的目标。在形态学分割中,需要根据具体的需求选择合适的形态学操作和参数。在本文中,我们使用了开运算和闭运算两种形态学操作进行分割,并根据实验结果选择了最优的操作和参数。

2.3 形态学特征提取

  形态学特征提取是指从形态学分割结果中提取具有代表性的特征。在本文中,我们使用了一些常见的形态学特征,例如面积、周长、凸包等。这些形态学特征能够反映血球目标的形状和大小等信息。除了常见的形态学特征之外,还可以使用一些深度学习方法进行特征提取。例如,可以使用卷积神经网络(CNN)对形态学分割结果进行特征提取。CNN能够学习到图像中的高级特征,从而提高血球目标的识别和跟踪效果。

2.4 血球目标跟踪

  在形态学特征提取之后,可以使用一些跟踪算法进行血球目标的跟踪。常见的跟踪算法包括卡尔曼滤波、粒子滤波、相关滤波等。这些跟踪算法能够根据前一帧的位置和速度等信息,预测下一帧中血球目标的位置。通过不断地迭代,可以实现血球目标的连续跟踪提取。

3.MATLAB核心程序
```function [I2,plotx,ploty,Num,indxx,Lensx2,Lensy2]=func_tracking_multi_object(I0,I1);

[rows,cols]= size(I1);
[L,n] = bwlabel(I1);%计算连通域的标记
Num = n;
Xc = 0;
Yc = 0;
L2(1:rows,1:cols,1:3) = 0;
I2(:,:,1) = I0(:,:,1);
I2(:,:,2) = I0(:,:,2);
I2(:,:,3) = I0(:,:,3);

S = zeros(1,Num);
X = zeros(2,Num);
Y = zeros(2,Num);
for i=1:n
[r,c]=find(L==i);%搜索目标
a1(i)=max(r);
a2(i)=min(r);
b1(i)=max(c);
b2(i)=min(c);
%用蓝色方框标记目标
L2(a2(i):a2(i)+4 , b2(i):b1(i) ,1) = 0;
L2(a1(i):a1(i)+4 , b2(i):b1(i) ,1) = 0;
L2(a2(i):a1(i) , b2(i):b2(i)+4,1) = 0;
L2(a2(i):a1(i) , b1(i):b1(i)+4,1) = 0;

L2(a2(i):a2(i)+4 , b2(i):b1(i)  ,2) =   0; 
L2(a1(i):a1(i)+4 , b2(i):b1(i)  ,2) =   0; 
L2(a2(i):a1(i)   , b2(i):b2(i)+4,2) =   0; 
L2(a2(i):a1(i)   , b1(i):b1(i)+4,2) =   0;  

L2(a2(i):a2(i)+4 , b2(i):b1(i)  ,3) =   255; 
L2(a1(i):a1(i)+4 , b2(i):b1(i)  ,3) =   255; 
L2(a2(i):a1(i)   , b2(i):b2(i)+4,3) =   255; 
L2(a2(i):a1(i)   , b1(i):b1(i)+4,3) =   255;     
%计算面积
S(i)   = length(r);
X(:,i) = [a2(i);a1(i)];
Y(:,i) = [b2(i);b1(i)];
%单独提取不同的目标
Isub   = zeros(rows,cols);
for j = 1:length(r)
    Isub(r(j),c(j)) = 1;
end
%保存不同的目标
Isub_save{i} = Isub;
Lensx(i)      = a1(i)-a2(i);
Lensy(i)      = b1(i)-b2(i);

end

%输出带方框的图像
for i = 1:rows
for j = 1:cols
if L2(i,j,3) == 255
I2(i,j,1) = 0;
I2(i,j,2) = 0;
I2(i,j,3) = 255;
else
I2(i,j,1) = I0(i,j,1);
I2(i,j,2) = I0(i,j,2);
I2(i,j,3) = I0(i,j,3);
end
end
end

%根据面积进行目标独特性区分
[V,I] = sort(S);
% V
% I
%求质心
%获得从小到大的目标排序
indxx = I;
for k = 1:Num
sumx = 0;
sumy = 0;
area = 0;
Is = Isub_save{indxx(k)};
[height,width] = size(Is);
for i = 1 : height
for j = 1 : width
if Is(i,j) == 1
sumx = sumx + i;
sumy = sumy + j;
area = area + 1;
end
end
end
%%质心坐标
plotx(1,k) = fix(sumx / area);
ploty(1,k) = fix(sumy / area);

Lensx2(k) = Lensx(indxx(k));
Lensy2(k) = Lensy(indxx(k));

end

for k = 1:Num
I2(round(plotx(k))-4:round(plotx(k))+4,round(ploty(k))-4:round(ploty(k))+4,1) = 255;
I2(round(plotx(k))-4:round(plotx(k))+4,round(ploty(k))-4:round(ploty(k))+4,2) = 0;
I2(round(plotx(k))-4:round(plotx(k))+4,round(ploty(k))-4:round(ploty(k))+4,3) = 0;
end
09_056_m
```

相关文章
|
8天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
5天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
8天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
6天前
|
算法 C++ Windows
基于离散差分法的复杂微分方程组求解matlab数值仿真
本程序基于离散差分法求解复杂微分方程组,将连续微分方程转化为差分方程,采用一阶显式时间格式和一阶偏心空间格式。在MATLAB2022a上测试通过,展示了运行结果。
|
10天前
|
机器学习/深度学习 存储 算法
基于圆柱体镜子和光线跟踪实现镜反射观测全景观图的matlab模拟仿真
本程序基于圆柱体镜子和光线跟踪技术,实现镜反射观测全景观图。通过模拟光线在场景与圆柱镜面之间的交互,构建出360°全景视图。核心算法涉及几何光学、计算机图形学和数值计算,适用于MATLAB 2022a版本。
|
11天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
47 0
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
162 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
116 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
84 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码