ChatGLM-6B (介绍以及本地部署)

简介: ChatGLM-6B (介绍以及本地部署)

ChatGLM-6B


简介


ChatGLM-6B 是一个开源的、支持中英双语问答的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 ChatGLM 相同的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。


ChatGLM 参考了 ChatGPT 的设计思路,在千亿基座模型 GLM-130B1中注入了代码预训练,通过有监督微调(Supervised Fine-Tuning)等技术实现人类意图对齐。ChatGLM 当前版本模型的能力提升主要来源于独特的千亿基座模型 GLM-130B。它是不同于 BERT、GPT-3 以及 T5 的架构,是一个包含多目标函数的自回归预训练模型。2022年8月,我们向研究界和工业界开放了拥有1300亿参数的中英双语稠密模型 GLM-130B1,该模型有一些独特的优势:


双语: 同时支持中文和英文。


高精度(英文): 在公开的英文自然语言榜单 LAMBADA、MMLU 和 Big-bench-lite 上优于 GPT-3 175B(API: davinci,基座模型)、OPT-175B 和 BLOOM-176B。


高精度(中文): 在7个零样本 CLUE 数据集和5个零样本 FewCLUE 数据集上明显优于 ERNIE TITAN 3.0 260B 和 YUAN 1.0-245B。


快速推理: 首个实现 INT4 量化的千亿模型,支持用一台 4 卡 3090 或 8 卡 2080Ti 服务器进行快速且基本无损推理。


可复现性: 所有结果(超过 30 个任务)均可通过我们的开源代码和模型参数复现。


跨平台: 支持在国产的海光 DCU、华为昇腾 910 和申威处理器及美国的英伟达芯片上进行训练与推理。

9.png

10.png

官方实例

>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
>>> model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
>>> response, history = model.chat(tokenizer, "你好", history=[])
>>> print(response)
你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。
>>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
>>> print(response)
晚上睡不着可能会让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法:
1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。
2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。
3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。
4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。
5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。
6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。
如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议。

本地部署


1.下载代码

git clone https://github.com/THUDM/ChatGLM-6B.git

2.通过conda创建虚拟环境

# 新建chatglm环境
conda create -n chatglm python=3.8
# 激活chatglm环境
conda activate chatglm
# 安装PyTorch环境(根据自己的cuda版本选择合适的torch版本)
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
# 安装gradio用于启动图形化web界面
pip install gradio
# 安装运行依赖
pip install -r requirement.txt

3.修改代码


  • 在web_demo.py的最后一句demo.queue().launch(share=True),加两个server_name=“0.0.0.0”, server_port=1234参数。
demo.queue().launch(share=True,server_name="0.0.0.0",server_port=9234)

4.模型量化


默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:


  • GPU
# FP16精度加载,需要13G显存
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
# int8精度加载,需要10G显存
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(8).cuda()
# int4精度加载,需要6G显存
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda()
  • CPU
#32G内存
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
#16G内存
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).bfloat16()

5.详细代码

from transformers import AutoModel, AutoTokenizer
import gradio as gr
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
# model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
# 按需修改,目前只支持 4/8 bit 量化
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda()
model = model.eval()
MAX_TURNS = 20
MAX_BOXES = MAX_TURNS * 2
def predict(input, history=[]):
    response, history = model.chat(tokenizer, input, history)
    updates = []
    for query, response in history:
        updates.append(gr.update(visible=True, value=query))
        updates.append(gr.update(visible=True, value=response))
    if len(updates) < MAX_BOXES:
        updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
    return [history] + updates
with gr.Blocks() as demo:
    state = gr.State([])
    text_boxes = []
    for i in range(MAX_BOXES):
        if i % 2 == 0:
            label = "提问:"
        else:
            label = "回复:"
        text_boxes.append(gr.Textbox(visible=False, label=label))
    with gr.Row():
        with gr.Column(scale=4):
            txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
        with gr.Column(scale=1):
            button = gr.Button("Generate")
    button.click(predict, [txt, state], [state] + text_boxes)
demo.queue().launch(share=True,server_name="0.0.0.0",server_port=9234)

调用示例

11.png

12.png

目录
相关文章
|
6月前
|
人工智能 算法 开发工具
Mixtral 8X7B MoE模型在阿里云PAI平台的微调部署实践
Mixtral 8x7B 是Mixtral AI最新发布的大语言模型,是当前最为先进的开源大语言模型之一。阿里云人工智能平台PAI,提供了对于 Mixtral 8x7B 模型的全面支持,开发者和企业用户可以基于 PAI-快速开始轻松完成Mixtral 8x7B 模型的微调和部署。
【ChatGLM】本地版ChatGPT ?6G显存即可轻松使用 !ChatGLM-6B 清华开源模型本地部署教程
【ChatGLM】本地版ChatGPT ?6G显存即可轻松使用 !ChatGLM-6B 清华开源模型本地部署教程
529 0
|
1天前
|
并行计算 Linux PyTorch
在云上部署ChatGLM2-6B大模型(GPU版)
本教程指导您在配置了Alibaba Cloud Linux 3的GPU云服务器上,安装大模型运行环境(如Anaconda、Pytorch等),并部署大语言模型,最后通过Streamlit运行大模型对话网页Demo。教程包括创建资源、登录ECS实例、安装及校验CUDA、NVIDIA驱动和cuDNN等步骤。
|
机器学习/深度学习 JSON 物联网
ChatGLM-6B 部署与 P-Tuning 微调实战
自从 ChatGPT 爆火以来,树先生一直琢磨想打造一个垂直领域的 LLM 专属模型,但学习文本大模型的技术原理,从头打造一个 LLM 模型难度极大。。。
2913 1
|
6月前
|
数据可视化 API 异构计算
一分钟部署 Llama3 中文大模型,没别的,就是快
Meta开源了80亿和700亿参数的大模型,挑战百度创始人李彦宏的观点。这些模型在性能上逼近GPT-4和Claude3。此外,一个400B的超大模型即将发布。Huggingface上已有多个Llama3中文微调版本。无GPU用户可使用量化模型在CPU上运行,如8B模型用8bit量化,70B模型用4bit量化。最佳中文微调版是zhouzr/Llama3-8B-Chinese-Chat-GGUF,可在三分钟内通过Sealos公有云快速部署,搭配WebUI如Lobe Chat进行交互。
551 2
|
2月前
|
存储 缓存 PyTorch
使用PyTorch从零构建Llama 3
本文将详细指导如何从零开始构建完整的Llama 3模型架构,并在自定义数据集上执行训练和推理。
59 1
|
3月前
|
人工智能 异构计算
基于PAI-EAS一键部署ChatGLM及LangChain应用
【8月更文挑战第7天】基于PAI-EAS一键部署ChatGLM及LangChain应用
|
4月前
|
自然语言处理
Ollama部署本地模型
Ollama 是一个用于本地部署大型语言模型的平台。首先关闭 ollama 服务,在环境变量中设置 `OLLAMA_MODELS` 为目标模型路径,`OLLAMA_ORIGINS` 为 `&quot;*&quot;`,重启服务和 VSCode。启动服务 `ollama serve`,运行 `ollama run codegeex4`。配置插件接口地址为 `http://localhost:11434/v1/chat/completions`,并在模型名称处填入 `codegeex4` 启用高级模式。可能需优化下载速度并解决其他问题。
372 4
|
3月前
|
自然语言处理 资源调度 机器人
10G显存,使用Unsloth微调Qwen2并使用Ollama推理
本文主要使用Unsloth基于Qwen2基础模型微调对话机器人以及在Ollama上运行。
|
5月前
|
机器学习/深度学习 算法 开发工具
通义千问2(Qwen2)大语言模型在PAI-QuickStart的微调、评测与部署实践
阿里云的人工智能平台PAI,作为一站式的机器学习和深度学习平台,对Qwen2模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过PAI-QuickStart轻松实现Qwen2系列模型的微调、评测和快速部署。