基于AidLux的自动驾驶智能预警应用方案

简介: 基于AidLux的项目实战之 智能预警在AidLux上的部署与应用

基于AidLux的项目实战之 智能预警在AidLux上的部署与应用
1.YOLOP模型onnx转换部署
YOLOP导出onnx模型
执行命令:
python3 export_onnx.py --height 640 --width 640
执行完成后,会在weights文件夹下生成转换成功的onnx模型
1.png

2.AidLux模型转换工具Al Model Optimizer
通过该工具对onnx模型转换成pt模型
2.png

3.YOLOP模型在AidLux上部署与应用
将项目上传到home文件夹,执行命令: pip install -r requirements.txt安装依赖环境,并通过demo.py验证推理效果。
3.png

4.智能预警系统代码实战
智能预警系统包含3个任务:目标检测,可行驶区域检测,车道线检测
1.输入:读取视频图像作为输入,图像尺寸1920*1080
4.png

2.预处理
2.1 将输入尺寸19201080 resize+padding到640640
2.2 归一化
2.3 6406403 -->13640*640
3.使用onnx模型进行推理
读取模型-->准备数据-->推理
得到det_out, da_seg_out, ll_seg_out,shape分别为:(1,n,6)(1,2,640,640)(1,2,640,640)
4.后处理
4.1将检测结果,可行驶区域检测结果,车道线检测结果,合并到一张图像上,分别用不同的颜色标记出来4.2将检测的帧数,帧率,车辆数等信息显示在图像上
5.png

5.输出
获取最终融合的图像,并保存成视频,图像尺寸、帧率、编码是原视频尺寸、帧率和编码
6.png
实战视频效果如下:https://www.bilibili.com/video/BV1QV4y187B9/?spm_id_from=333.788.top_right_bar_window_history.content.click&vd_source=5d3ae1cbed185c1432e0f3004ca324fc

相关文章
|
3月前
|
传感器 数据采集 机器学习/深度学习
人工智能与环境保护:智能监测与治理的新策略
【9月更文挑战第21天】人工智能在环境保护中的应用,为智能监测与治理提供了新的策略和方法。通过实时数据采集与分析、智能预警与应急响应、精准化决策支持等技术的应用,AI正在引领一场革命性的变革。未来,随着技术的不断发展和应用场景的拓展,AI将在环境保护中发挥更加重要的作用,助力我们构建更加绿色、可持续的未来。让我们携手共进,共同迎接一个更加美好的明天。
|
3月前
|
传感器 人工智能 自动驾驶
智能交通系统:自动驾驶技术的社会影响
【9月更文挑战第27天】随着科技发展,智能交通系统与自动驾驶技术正革新交通领域,从提高交通效率与安全性到优化资源分配,其影响深远。自动驾驶技术基于AI与传感器,历经五个等级演进,促进交通流畅的同时减少人为驾驶错误。然而,技术进步亦引发就业市场变化、数据隐私及道德责任等问题,城市规划需适应新技术,加建充电站等设施。尽管存在挑战,智能交通系统仍有望重塑城市面貌,提升出行体验,实现更高效、环保的城市交通体系。
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
AI与未来医疗:智能化诊断与治疗的新篇章
本文探讨了人工智能在医疗领域的应用,特别是智能化诊断与治疗。通过分析AI的技术原理、实际案例以及面临的伦理和法律挑战,揭示了AI在未来医疗中的巨大潜力和前景。
45 2
|
3月前
|
传感器 机器学习/深度学习 自动驾驶
未来出行的智能革命:自动驾驶技术的进展与挑战
自动驾驶技术正逐步改变我们的交通方式,从辅助驾驶到完全自动化,每一次技术跃迁都带来了新的可能。本文将探讨自动驾驶的发展历程、关键技术里程碑及其面临的主要挑战和未来趋势。
284 4
|
6月前
|
机器学习/深度学习 传感器 人工智能
人工智能在自动驾驶汽车决策系统中的应用
人工智能在自动驾驶汽车决策系统中的应用
|
7月前
|
传感器 机器学习/深度学习 自动驾驶
自动驾驶中的感知模型:实现安全和智能驾驶的关键
自动驾驶中的感知模型:实现安全和智能驾驶的关键
164 9
|
传感器 机器学习/深度学习 监控
智能驾驶如何加强安全保障
智能驾驶如何加强安全保障
81 0
|
自动驾驶 计算机视觉 Python
《基于AidLux的自动驾驶智能预警应用方案》
基于AidLux的项目实战之 智能预警在AidLux上的部署与应用
《基于AidLux的自动驾驶智能预警应用方案》
|
传感器 机器学习/深度学习 边缘计算
基于AidLux的自动驾驶智能预警应用方案
基于AidLux的自动驾驶智能预警应用方案
134 0
|
自动驾驶 计算机视觉
基于Aidlux的自动驾驶之智能预警部署
YOLOP能同时处理目标检测、可行驶区域分割、车道线检测三个视觉感知任务,并速度优异、保持较好精度进行工作,代码开源。它是华中科技大学- --王兴刚团队,在全景驾驶感知方面提出的模型。