Redis集群哈希槽数据分片

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis 集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽.集群的每个节点负责一部分hash槽。这种结构很容易添加或者删除节点,并且无论是添加删除或者修改某一个节点,都不会造成集群不可用的状态。

相关链接

CRC16算法源码:https://github.com/redis/redis/blob/6.0/src/crc16.c

一致性hash算法原理:https://www.cnblogs.com/lpfuture/p/5796398.html

概念理解

Redis 集群没有使用一致性hash, 而是引入了哈希槽的概念。

Redis 集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽.

集群的每个节点负责一部分hash槽。这种结构很容易添加或者删除节点,并且无论是添加删除或者修改某一个节点,都不会造成集群不可用的状态。

使用哈希槽的好处就在于可以方便的添加或移除节点。

当需要增加节点时,只需要把其他节点的某些哈希槽挪到新节点就可以了;

当需要移除节点时,只需要把移除节点上的哈希槽挪到其他节点就行了;

在这一点上,我们以后新增或移除节点的时候不用先停掉所有的 redis 服务

img

当前集群有3个节点,槽默认是平均分的:
节点 A (6381)包含 0 到 5499号哈希槽.
节点 B (6382)包含5500 到 10999 号哈希槽.
节点 C (6383)包含11000 到 16383号哈希槽.

数据迁移

数据迁移可以理解为slot(槽)和key的迁移,这个功能很重要,极大地方便了集群做线性扩展,以及实现平滑的扩容或缩容。

现在要将Master A节点中编号为1、2、3的slot迁移到Master B节点中,在slot迁移的中间状态下,slot 1、2、3在Master A节点的状态表现为MIGRATING(迁移),在Master B节点的状态表现为IMPORTING(入口)。

img

此时并不刷新node的映射关系

IMPORTING状态

被迁移slot 在目标Master B节点中出现的一种状态,准备迁移slot从Mater A到Master B的时候,被迁移slot的状态首先变为IMPORTING状态。

键空间迁移

键空间迁移是指当满足了slot迁移前提的情况下,通过相关命令将slot 1、2、3中的键空间从Master A节点转移到Master B节点。此时刷新node的映射关系。

img

复制&高可用:集群的节点内置了复制和高可用特性。

特点:

1、节点自动发现
2、slave->master 选举,集群容错
3、Hot resharding:在线分片
4、基于配置(nodes-port.conf)的集群管理
5、客户端与redis节点直连、不需要中间proxy层.
6、所有的redis节点彼此互联(PING-PONG机制),内部使用二进制协议优化传输速度和带宽.

相关问题

1、用了哈希槽的概念,而没有用一致性哈希算法,不都是哈希么?这样做的原因是为什么呢?
Redis Cluster是自己做的crc16的简单hash算法,没有用一致性hash。Redis的作者认为它的crc16(key) mod 16384的效果已经不错了,虽然没有一致性hash灵活,但实现很简单,节点增删时处理起来也很方便。

2、为了动态增删节点的时候,不至于丢失数据么?
节点增删时不丢失数据和hash算法没什么关系,不丢失数据要求的是一份数据有多个副本。

3、还有集群总共有2的14次方,16384个哈希槽,那么每一个哈希槽中存的key 和 value是什么?
当你往Redis Cluster中加入一个Key时,会根据crc16(key) mod 16384计算这个key应该分布到哪个hash slot中,一个hash slot中会有很多key和value。你可以理解成表的分区,使用单节点时的redis时只有一个表,所有的key都放在这个表里;改用Redis Cluster以后会自动为你生成16384个分区表,你insert数据时会根据上面的简单算法来决定你的key应该存在哪个分区,每个分区里有很多key。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
5天前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
34 16
|
25天前
|
监控 NoSQL Java
场景题:百万数据插入Redis有哪些实现方案?
场景题:百万数据插入Redis有哪些实现方案?
35 1
场景题:百万数据插入Redis有哪些实现方案?
|
5天前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
33 14
|
5天前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用哈希槽分区算法,共有16384个哈希槽,每个槽分配到不同的Redis节点上。数据操作时,通过CRC16算法对key计算并取模,确定其所属的槽和对应的节点,从而实现高效的数据存取。
29 13
|
5天前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
Redis 采用两种过期键删除策略:惰性删除和定期删除。惰性删除在读取键时检查是否过期并删除,对 CPU 友好但可能积压大量过期键。定期删除则定时抽样检查并删除过期键,对内存更友好。默认每秒扫描 10 次,每次检查 20 个键,若超过 25% 过期则继续检查,单次最大执行时间 25ms。两者结合使用以平衡性能和资源占用。
28 11
|
5天前
|
监控 NoSQL 测试技术
【赵渝强老师】Redis的AOF数据持久化
Redis 是内存数据库,提供数据持久化功能,支持 RDB 和 AOF 两种方式。AOF 以日志形式记录每个写操作,支持定期重写以压缩文件。默认情况下,AOF 功能关闭,需在 `redis.conf` 中启用。通过 `info` 命令可监控 AOF 状态。AOF 重写功能可有效控制文件大小,避免性能下降。
|
5天前
|
存储 监控 NoSQL
【赵渝强老师】Redis的RDB数据持久化
Redis 是内存数据库,提供数据持久化功能以防止服务器进程退出导致数据丢失。Redis 支持 RDB 和 AOF 两种持久化方式,其中 RDB 是默认的持久化方式。RDB 通过在指定时间间隔内将内存中的数据快照写入磁盘,确保数据的安全性和恢复能力。RDB 持久化机制包括创建子进程、将数据写入临时文件并替换旧文件等步骤。优点包括适合大规模数据恢复和低数据完整性要求的场景,但也有数据完整性和一致性较低及备份时占用内存的缺点。
|
24天前
|
存储 NoSQL Redis
Redis 哈希(Hash)
10月更文挑战第16天
33 1
|
1月前
|
消息中间件 缓存 NoSQL
大数据-49 Redis 缓存问题中 穿透、雪崩、击穿、数据不一致、HotKey、BigKey
大数据-49 Redis 缓存问题中 穿透、雪崩、击穿、数据不一致、HotKey、BigKey
50 2
|
25天前
|
存储 数据采集 监控
将百万数据插入到 Redis,有哪些实现方案
【10月更文挑战第15天】将百万数据插入到 Redis 是一个具有挑战性的任务,但通过合理选择实现方案和进行性能优化,可以高效地完成任务。
78 0