Java设计模式:深入解析与应用示例

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 引言设计模式是一种在特定上下文中反复出现的可重用解决方案,用于处理软件设计中常见的问题。掌握设计模式不仅可以帮助我们编写出更优雅、更易于理解和维护的代码,而且也是Java面试中的常考知识点。在本文中,我们将探讨几种常见的设计模式,包括它们的定义、使用场景和Java实现。

引言

设计模式是一种在特定上下文中反复出现的可重用解决方案,用于处理软件设计中常见的问题。掌握设计模式不仅可以帮助我们编写出更优雅、更易于理解和维护的代码,而且也是Java面试中的常考知识点。在本文中,我们将探讨几种常见的设计模式,包括它们的定义、使用场景和Java实现。

一、单例模式

单例模式确保一个类只有一个实例,并提供全局访问点。这种设计模式属于创建型模式,它涉及一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。


应用场景:需要频繁实例化然后销毁的对象,数据库连接、线程池等长时间存在于系统中的对象。

示例代码:

public class Singleton {
    // 使用volatile关键字防止指令重排序
    private static volatile Singleton instance;
    private Singleton() {}
    // 提供全局访问点
    public static Singleton getInstance() {
        // 第一次检查
        if (instance == null) {
            // 加锁
            synchronized (Singleton.class) {
                // 第二次检查
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

我们创建了一个 Singleton 类。Singleton 类有一个 getInstance() 方法,它可以返回 Singleton 类的一个实例。在这个类中,我们有一个私有构造函数,它可以防止其他类实例化这个类。而 getInstance() 方法可以为其他类提供了一种方式来获取这个类的单一实例。

二、工厂模式

工厂模式是一种创建型设计模式,它提供了一种创建对象的最佳方式。在工厂模式中,我们在创建对象时不会对客户端暴露创建逻辑,并且是通过使用一个共同的接口来指向新创建的对象。

应用场景:在编码时不能预见需要创建哪种类的实例,系统需要提供一个接口,让系统与其各种具体实现类之间解耦。

示例代码:

public interface Shape {
    void draw();
}
public class Rectangle implements Shape {
    @Override
    public void draw() {
        System.out.println("Inside Rectangle::draw() method.");
    }
}
public class ShapeFactory {
    // 使用getShape方法获取形状类型的对象
    public Shape getShape(String shapeType) {
        if (shapeType.equalsIgnoreCase("RECTANGLE")) {
            return new Rectangle();
        }
        // other shape types...
        return null;
    }
}

我们首先创建了一个接口 Shape 和实现了 Shape 接口的实体类。然后我们创建了一个工厂类 ShapeFactory。ShapeFactory 类有一个方法 getShape ,根据输入的类型,返回一个实体类的实例。在这个例子中,我们的工厂类 ShapeFactory 是如何根据我们提供的信息来返回不同类的实例的。

三、抽象工厂模式

抽象工厂模式是一种创建型设计模式,它提供了一种方式,可以将一组具有同一主题的单独的工厂封装起来。在抽象工厂模式中,抽象工厂定义了产品是什么,为创建一系列相关或相互依赖应用场景:系统的产品有多于一个的产品族,而系统只消费其中某一族的产品。

示例代码:

public interface GUIFactory {
    Button createButton();
    Checkbox createCheckbox();
}
public class WinFactory implements GUIFactory {
    // 返回WinButton类的实例
    public Button createButton() {
        return new WinButton();
    }
    // 返回WinCheckbox类的实例
    public Checkbox createCheckbox() {
        return new WinCheckbox();
    }
}

和工厂模式类似,但是这次我们添加了一个新的层次——工厂创造器/生成器类 FactoryProducerAbstractFactory 类是所有工厂类的超类,FactoryProducer 可以根据传入的信息返回一个特定的工厂

四、建造者模式

建造者模式是一种创建型设计模式,它可以将一个复杂对象的建造过程抽象出来(抽象为指挥者和建造者),使这个抽象过程的不同实现方法可以构造出不同表现(属性)的复杂对象。具体来说,将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示。


应用场景:需要生成的产品对象有复杂的内部结构,这些产品对象通常包含多个部分。示例代码:

public class Pizza {
    private String dough = "";
    private String sauce = "";
    private String topping = "";
    // setters...
}
public class PizzaBuilder {
    private Pizza pizza;
    public PizzaBuilder() {
        pizza = new Pizza();
    }
    public PizzaBuilder setDough(String dough) {
        pizza.setDough(dough);
        return this;
    }
    public PizzaBuilder setSauce(String sauce) {
        pizza.setSauce(sauce);
        return this;
    }
    public PizzaBuilder setTopping(String topping) {
        pizza.setTopping(topping);
        return this;
    }
    // 最终构建复杂的Pizza对象并返回
    public Pizza build() {
        return pizza;
    }
}

Packing 和 Item 接口表示食物和食物包装。然后我们有了实体类实现了这些接口,Burger 和 ColdDrink 实现了 Item 接口,Wrapper 和 Bottle 实现了 Packing 接口。Meal 类是一个组合类,包含了 Item 对象。MealBuilder 是实际的构建器,负责创建 Meal 对象。

五、原型模式

原型模式是创建型设计模式,通过复制一个已存在的实例来返回新的实例,而不是新建实例。被复制的实例就是我们所称的“原型”,这个原型是可定制的。

应用场景:创建对象成本较大(如初始化需要消耗很多

时间,占用太多CPU资源或网络资源),新的对象可以通过原型模式对已有对象进行复制来获得,如果是相似对象,则可以对其成员变量稍作修改。

示例代码:

public class Prototype implements Cloneable {
    // 使用 clone() 方法来创建新的实例
    public Prototype clone() {
        try {
            return
 (Prototype) super.clone();
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }
        return null;
    }
}

在原型模式中,我们通过复制一个已存在的对象来创建新的对象。我们创建了一个抽象类 Shape 和几个扩展了 Shape 类的实体类。ShapeCache 类是一个缓存类,将shape对象存储在一个 Hashtable 中,并在请求的时候返回它们的克隆。

六、适配器模式

适配器模式是一种结构型设计模式,它通过把一个类的接口变换成客户端所期待的另一种接口,可以帮助我们解决不兼容的问题。这个模式主要应用于希望复用那些与新系统不兼容的旧组件的场景,使得原本由于接口不兼容而不能一起工作的那些类可以在一起工作。


应用场景:已经存在的类,它的方法和我们的需求不一样,也就是接口不相同,或者我们创建了一个可复用的类,该类可能和现有的类库不是很兼容,需要在双方都不易修改的情况下使用适配器模式。示例代码:

// 目标接口,或称为标准接口
public interface MediaPlayer {
    void play(String audioType, String fileName);
}
// 适配器类,实现MediaPlayer接口
public class MediaAdapter implements MediaPlayer {
    // 适配器中包含了一个需要适配的对象
    AdvancedMediaPlayer advancedMusicPlayer;
    public MediaAdapter(String audioType) {
        if (audioType.equalsIgnoreCase("vlc")) {
            advancedMusicPlayer = new VlcPlayer();
        } else if (audioType.equalsIgnoreCase("mp4")) {
            advancedMusicPlayer = new Mp4Player();
        }
    }
    // 调用适配器中的方法
    public void play(String audioType, String fileName) {
        if (audioType.equalsIgnoreCase("vlc")) {
            advancedMusicPlayer.playVlc(fileName);
        } else if (audioType.equalsIgnoreCase("mp4")) {
            advancedMusicPlayer.playMp4(fileName);
        }
    }
}

我们有一个 MediaPlayer 接口和一个实现了 MediaPlayer 接口的实体类。然后我们创建了另一个接口 AdvancedMediaPlayer 和实现了 AdvancedMediaPlayer 接口的实体类。然后我们创建了一个适配器类 MediaAdapter,它使用 AdvancedMediaPlayer 对象来播放所需要的格式。

七、装饰器模式

装饰器模式是一种结构型设计模式,它允许向一个现有的对象添加新的功能,同时又不改变其结构。这种类型的设计模式属于结构型模式,它在不需要使用继承的情况下为对象动态添加新的功能。

应用场景:在不想增加很多子类的情况下扩展类,需要动态增加及撤销对象的功能。

示例代码:

// 定义接口Shape
public interface Shape {
    void draw();
}
// 定义装饰器DecoratorShape
public class DecoratorShape implements Shape {
    protected Shape decoratedShape;
    public DecoratorShape(Shape decoratedShape) {
        this.decoratedShape = decoratedShape;
    }
    // 在装饰器中调用原始对象的方法,并添加新的功能
    public void draw() {
        decoratedShape.draw();
        System.out.println("Additional decoration function.");
    }
}

我们有一个 Shape 接口和实现了 Shape 接口的实体类。然后我们创建了一个抽象的装饰器类 ShapeDecorator,并扩展了 Shape 接口,此装饰器类在被装饰类上进行了一层包装,以增加新的功能。

八、观察者模式

观察者模式是一种行为型设计模式,定义对象间的一种一对多的依赖关系,使得当一个对象的状态发生改变时,其相关依赖对象皆会得到通知并被自动更新。观察者模式属于行为型模式。

应用场景:当一个对象的改变需要同时改变其他对象,并且它不知道具体有多少对象需要改变,就可以考虑使用观察者模式。

示例代码:

// 定义Subject,持有观察者的列表,并提供attach和notifyAllObservers方法
public class Subject {
    private List<Observer> observers = new ArrayList<Observer>();
    public void attach(Observer observer) {
        observers.add(observer);
    }
    public void notifyAllObservers() {
        for (Observer observer : observers) {
            observer.update();
        }
    }
}
// 定义Observer,声明更新自己的抽象方法
public abstract class Observer {
    protected Subject subject;
    public abstract void update();
}

我们创建了 Subject 类、Observer 抽象类和扩展了 Observer 类的实体类。Subject 对象改变状态时,所有依赖于它的对象都会得到通知,并自动更新。

九、策略模式

策略模式是一种行为型设计模式,它定义了一系列的算法,并将每一个算法封装起来,而且使它们可以相互替换。策略模式让算法独立于使用它的客户而独立变化。


应用场景:一个系统有很多类的算法或者业务逻辑,可以把这些算法或者业务逻辑封装在同一个接口的不同的实现类中,减少使用多重转移语句(if…else if…else)。示例代码:

// 定义策略接口,声明算法方法
public interface Strategy {
    public int doOperation(int num1, int num2);
}
// 定义具体策略类
public class OperationAdd implements Strategy {
    public int doOperation(int num1, int num2) {
        return num1 + num2;
    }
}
// 环境类,持有一个策略类的引用
public class StrategyContext {
    private Strategy strategy;
    public StrategyContext(Strategy strategy) {
        this.strategy = strategy;
    }
    // 使用策略的方法
    public int executeStrategy(int num1, int num2) {
        return strategy.doOperation(num1, num2);
    }
}

我们定义了一个策略接口 Strategy 和实现了 Strategy 接口的实体策略类。Context 是一个使用了某种策略的类。Context 对象使用了一些策略对象,这个策略对象改变了 Context 对象的执行算法。

十、命令模式

命令模式是一种行为型设计模式,它通过在对象之间引入级别,使得对象之间的依赖关系变得更加简单,并且降低了组合和调用的复杂性。这种模式涉及到五个组件:Client、Invoker、Command、ConcreteCommand、Receiver。


应用场景:当需要为请求调用者与请求接收者解耦时,命令模式使得调用者与接收者不直接交互,并且调用者无需知道接收者的接口。命令模式可以用于有多个触发者或接收者,需要向多个对象发出请求。示例代码:

// 命令接口,声明执行方法
public interface Order {
    void execute();
}
// 具体命令类,实现Order接口的execute方法,调用接收者的方法
public class StockRequest implements Order {
    private Stock stock;
    public StockRequest(Stock stock) {
        this.stock = stock;
    }
    public void execute() {
        stock.buy();
    }
}
// 调用者类,接收命令并执行
public class Broker {
    private List<Order> orderList = new ArrayList<Order>();
    public void takeOrder(Order order) {
        orderList.add(order);
    }
    public void placeOrders() {
        for (Order order : orderList) {
            order.execute();
        }
        orderList.clear();
    }
}

我们创建了一个请求类 Stock,一个命令接口 Order 和实现了 Order 接口的实体命令类。命令实现类持有一个对请求的引用,并执行这个请求。Broker 对象使用命令对象和队列来执行请求。

结语

在这篇博客中,我们研究了10种常用的Java设计模式,希望这些知识能帮助你在日常开发或面试中更好地解决问题。记住,设计模式只是工具。在实际项目中,我们应该根据项目需求和具体情况选择合适的设计模式,而不是强行套用。

相关文章
|
1月前
|
人工智能 安全 Java
Java和Python在企业中的应用情况
Java和Python在企业中的应用情况
53 7
|
2天前
|
设计模式 XML Java
【23种设计模式·全精解析 | 自定义Spring框架篇】Spring核心源码分析+自定义Spring的IOC功能,依赖注入功能
本文详细介绍了Spring框架的核心功能,并通过手写自定义Spring框架的方式,深入理解了Spring的IOC(控制反转)和DI(依赖注入)功能,并且学会实际运用设计模式到真实开发中。
【23种设计模式·全精解析 | 自定义Spring框架篇】Spring核心源码分析+自定义Spring的IOC功能,依赖注入功能
|
2天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
2天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2天前
|
设计模式 Java 程序员
【23种设计模式·全精解析 | 概述篇】设计模式概述、UML图、软件设计原则
本系列文章聚焦于面向对象软件设计中的设计模式,旨在帮助开发人员掌握23种经典设计模式及其应用。内容分为三大部分:第一部分介绍设计模式的概念、UML图和软件设计原则;第二部分详细讲解创建型、结构型和行为型模式,并配以代码示例;第三部分通过自定义Spring的IOC功能综合案例,展示如何将常用设计模式应用于实际项目中。通过学习这些内容,读者可以提升编程能力,提高代码的可维护性和复用性。
【23种设计模式·全精解析 | 概述篇】设计模式概述、UML图、软件设计原则
|
4天前
|
安全 算法 Java
Java CAS原理和应用场景大揭秘:你掌握了吗?
CAS(Compare and Swap)是一种乐观锁机制,通过硬件指令实现原子操作,确保多线程环境下对共享变量的安全访问。它避免了传统互斥锁的性能开销和线程阻塞问题。CAS操作包含三个步骤:获取期望值、比较当前值与期望值是否相等、若相等则更新为新值。CAS广泛应用于高并发场景,如数据库事务、分布式锁、无锁数据结构等,但需注意ABA问题。Java中常用`java.util.concurrent.atomic`包下的类支持CAS操作。
23 2
|
26天前
|
设计模式 消息中间件 搜索推荐
Java 设计模式——观察者模式:从优衣库不使用新疆棉事件看系统的动态响应
【11月更文挑战第17天】观察者模式是一种行为设计模式,定义了一对多的依赖关系,使多个观察者对象能直接监听并响应某一主题对象的状态变化。本文介绍了观察者模式的基本概念、商业系统中的应用实例,如优衣库事件中各相关方的动态响应,以及模式的优势和实际系统设计中的应用建议,包括事件驱动架构和消息队列的使用。
|
26天前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
112 6
|
25天前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
29 2

热门文章

最新文章