python中进程的几种创建方式

简介: python中进程的几种创建方式

在新创建的子进程中,会把父进程的所有信息复制一份,它们之间的数据互不影响。

1.使用os.fork()创建

该方式只能用于Unix/Linux操作系统中,在windows不能用。

import os

# 注意,fork函数,只在Unix/Linux/Mac上运行,windows不可以
pid = os.fork()
# 子进程永远返回0,而父进程返回子进程的ID。
if pid == 0:
    print('子进程')
else:
    print('父进程')

2.使用Process类类创建

multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:

from multiprocessing import Process
import time

def test(name, age):
    for i in range(5):
        print("--test--%s\t%d" % (name, age))
        time.sleep(1)
    print("子进程结束")


if __name__ == '__main__':
    p = Process(target=test, args=("aaa", 18))
    p.start()
    # 等待进程实例执⾏结束,或等待多少秒;
    p.join() # 等待的最长时间
    print("主进程结束")
"""
输出结果:
--test--aaa 18
--test--aaa 18
--test--aaa 18
--test--aaa 18
--test--aaa 18
子进程结束
主进程结束
"""

join()方法表示主进程等待子进程执行完成后继续往下执行,如果把join()注释掉,则主进程开启子进程后不停顿继续往下执行,然后等待子进程完成程序结束。
把join()方法注释掉的结果:

"""
输出结果:
主进程结束
--test--aaa 18
--test--aaa 18
--test--aaa 18
--test--aaa 18
--test--aaa 18
子进程结束
"""

3.使用Process子类创建

创建新的进程还能够使用类的方式,可以自定义一个类,继承Process类,每次实例化这个类的时候,就等同于实例化一个进程对象,请看下面的实例:

from multiprocessing import Process
import time
import os


class MyProcess(Process):

    def __init__(self):
        # 如果子类要重写__init__是必须要先调用父类的__init__否则会报错
        # Process.__init__(self)  
        super(MyProcess,self).__init__()
     # 学习中遇到问题没人解答?小编创建了一个Python学习交流群:711312441
    # 重写Porcess的run()方法
    def run(self):
        print("子进程(%s)开始执行,父进程(%s)" % (os.getpid(), os.getppid()))
        for i in range(5):
            print("--1--")
            time.sleep(1)


if __name__ == '__main__':
    t_start = time.time()
    p = MyProcess()
    p.start()
    # p.join()
    print("main")
    for i in range(5):
        print("--main--")
        time.sleep(1)

4.使用进程池Pool创建

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行,请看下面的实例:

from multiprocessing import Pool
import os
import time


def worker(num):
    # for i in range(3):
    print("----pid=%d  num=%d---" % (os.getpid(), num))
    time.sleep(1)

if __name__ == '__main__':
    # 定义一个进程池,最大进程数3
    pool = Pool(3)
    for i in range(10):
        print("---%d--" % i)
        # 使用非阻塞方式调用func(并行执行),一般用这个。
        # apply堵塞方式必须等待上一个进程退出才能执行下一个进程,用的不多。
        pool.apply_async(worker, (i,))
    # 关闭进程池
    pool.close()
    # 等待所有子进程结束,主进程一般用来等待
    pool.join()  # 进程池后面无操作时必须有这句
相关文章
|
6天前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
22 1
|
13天前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
27天前
|
数据挖掘 程序员 调度
探索Python的并发编程:线程与进程的实战应用
【10月更文挑战第4天】 本文深入探讨了Python中实现并发编程的两种主要方式——线程和进程,通过对比分析它们的特点、适用场景以及在实际编程中的应用,为读者提供清晰的指导。同时,文章还介绍了一些高级并发模型如协程,并给出了性能优化的建议。
26 3
|
2月前
|
负载均衡 Java 调度
探索Python的并发编程:线程与进程的比较与应用
本文旨在深入探讨Python中的并发编程,重点比较线程与进程的异同、适用场景及实现方法。通过分析GIL对线程并发的影响,以及进程间通信的成本,我们将揭示何时选择线程或进程更为合理。同时,文章将提供实用的代码示例,帮助读者更好地理解并运用这些概念,以提升多任务处理的效率和性能。
55 3
|
23天前
|
存储 Python
Python中的多进程通信实践指南
Python中的多进程通信实践指南
14 0
|
2月前
|
消息中间件 安全 Kafka
Python IPC机制全攻略:让进程间通信变得像呼吸一样自然
【9月更文挑战第12天】在编程领域,进程间通信(IPC)是连接独立执行单元的关键技术。Python凭借简洁的语法和丰富的库支持,提供了多种IPC方案。本文将对比探讨Python的IPC机制,包括管道与消息队列、套接字与共享内存。管道适用于简单场景,而消息队列更灵活,适合高并发环境。套接字广泛用于网络通信,共享内存则在本地高效传输数据。通过示例代码展示`multiprocessing.Queue`的使用,帮助读者理解IPC的实际应用。希望本文能让你更熟练地选择和运用IPC机制。
54 10
|
1月前
|
数据采集 消息中间件 Python
Python爬虫-进程间通信
Python爬虫-进程间通信
|
2月前
|
监控 Ubuntu API
Python脚本监控Ubuntu系统进程内存的实现方式
通过这种方法,我们可以很容易地监控Ubuntu系统中进程的内存使用情况,对于性能分析和资源管理具有很大的帮助。这只是 `psutil`库功能的冰山一角,`psutil`还能够提供更多关于系统和进程的详细信息,强烈推荐进一步探索这个强大的库。
40 1
|
2月前
|
安全 开发者 Python
Python IPC大揭秘:解锁进程间通信新姿势,让你的应用无界连接
【9月更文挑战第11天】在编程世界中,进程间通信(IPC)如同一座无形的桥梁,连接不同进程的信息孤岛,使应用无界而广阔。Python凭借其丰富的IPC机制,让开发者轻松实现进程间的无缝交流。本文将揭开Python IPC的神秘面纱,介绍几种关键的IPC技术:管道提供简单的单向数据传输,适合父子进程间通信;队列则是线程和进程安全的数据共享结构,支持多进程访问;共享内存允许快速读写大量数据,需配合锁机制确保一致性;套接字则能实现跨网络的通信,构建分布式系统。掌握这些技术,你的应用将不再受限于单个进程,实现更强大的功能。
63 6
|
2月前
|
Python
惊!Python进程间通信IPC,让你的程序秒变社交达人,信息畅通无阻
【9月更文挑战第13天】在编程的世界中,进程间通信(IPC)如同一场精彩的社交舞会,每个进程通过优雅的IPC机制交换信息,协同工作。本文将带你探索Python中的IPC奥秘,了解它是如何让程序实现无缝信息交流的。IPC如同隐形桥梁,连接各进程,使其跨越边界自由沟通。Python提供了多种IPC机制,如管道、队列、共享内存及套接字,适用于不同场景。通过一个简单的队列示例,我们将展示如何使用`multiprocessing.Queue`实现进程间通信,使程序如同社交达人般高效互动。掌握IPC,让你的程序在编程舞台上大放异彩。
22 3