UNet++详细解读(一)论文技术要点归纳

简介: UNet++详细解读(一)论文技术要点归纳

UNet++


概要


unet++是一种基于深度监督的编码器-解码器网络结构,并且有密集的跳跃链接。


简介


跳跃连接在分割网络中十分重要,可以结合深层和浅层的语义信息。


在FCN中跳跃连接是通过元素级别的相加来实现的,在UNet中是通过拼接操作来实现的。


是否可以将Resnet和Densnet中的密集连接移植过来?


医学上的分割需要更精确,Unet无法满足,因此提出 了UNet++。


网络架构

5.png

黑色部分是Backbone,是原先的UNet。


绿色箭头为上采样,蓝色箭头为密集跳跃连接。


绿色的模块为密集连接块,是经过左边两个部分拼接操作后组成的


跳跃连接


其中(i,j)表示第i层第j个卷积层。


H表示卷积操作和激活函数


U表示上采样


[]表示拼接操作

6.png

深度监督


所示,该结构下有4个分支,可以分为两种模式。


精确模式:4个分支取平均值结果


快速模式:只选择一个分支,其余被剪枝


损失函数

7.png

左边部分为二值交叉熵,右边为DICE系数,用于度量相似度。


实验


数据集


采用了4个不同的医学数据集

8.png

实验参数


评价指标:IOU和DICE系数。


学习率:3e-4


优化器:Adam


实验结果


如图所示,UNet++的效果始终好于另外两个。

9.png

实验结果如下图所示,在IOU评价指标上,


没有深度监督的UNet++高于基线2.8-3.3个点


有深度监督的UNet++高于没有深度监督的UNet++ 0.6个点

10.png

模型剪枝


如下图所示:UNet++L3的推理时间平均减少了32.2%,而IoU只降低了0.6点。

11.png

结论


为了满足更精确的医学图像分割的需要,我们提出了UNet++,加入了深度监督和密集连接。


在U-Net和wideU-Net上实现了3.9和3.4点的平均IoU增益。

目录
相关文章
|
10月前
|
人工智能 并行计算 语音技术
Open-LLM-VTuber:宅男福音!开源AI老婆离线版上线,实时语音+Live2D互动还会脸红心跳
Open-LLM-VTuber 是一个开源的跨平台语音交互 AI 伴侣项目,支持实时语音对话、视觉感知和生动的 Live2D 动态形象,完全离线运行,保护用户隐私。
1209 10
Open-LLM-VTuber:宅男福音!开源AI老婆离线版上线,实时语音+Live2D互动还会脸红心跳
|
机器学习/深度学习 算法 计算机视觉
经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现)
经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现)
5801 1
经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现)
|
机器学习/深度学习 决策智能
深度学习中的对抗性训练
在这篇技术性文章中,我们将深入探讨深度学习中的对抗性训练。这种训练方法通过引入对抗性样本来提高模型的鲁棒性和泛化能力。文章将从对抗性训练的基本概念、原理以及实现方法等方面进行详细介绍,并结合实际案例分析其在实际应用中的效果和挑战。通过对这一主题的探讨,希望能够为读者提供有益的技术参考和启示。
703 1
|
机器学习/深度学习 算法 PyTorch
使用Pytorch中从头实现去噪扩散概率模型(DDPM)
在本文中,我们将构建基础的无条件扩散模型,即去噪扩散概率模型(DDPM)。从探究算法的直观工作原理开始,然后在PyTorch中从头构建它。本文主要关注算法背后的思想和具体实现细节。
9313 3
|
算法 PyTorch 算法框架/工具
UNet++详细解读(二)pytorch从头开始搭建UNet++
UNet++详细解读(二)pytorch从头开始搭建UNet++
925 0
|
算法 Go vr&ar
YOLOv8模型yaml结构图理解(逐层分析)
YOLOv8模型yaml结构图理解(逐层分析)
19395 0
|
机器学习/深度学习 编解码 数据可视化
UNet 和 UNet++:医学影像经典分割网络对比
UNet 和 UNet++:医学影像经典分割网络对比
2101 0
|
机器学习/深度学习 人工智能 自然语言处理
一文带你理解【自然语言处理(NLP)】的基本概念及应用
一文带你理解【自然语言处理(NLP)】的基本概念及应用
1113 0
|
机器学习/深度学习 编解码 缓存
两阶段目标检测指南:R-CNN、FPN、Mask R-CNN
两阶段目标检测指南:R-CNN、FPN、Mask R-CNN
|
Oracle 关系型数据库
ORACLE exp/imp导入报错IMP-00009&IMP-00028&IMP-00015
    2017年8月14日,一实施同事使用imp导入exp导出的dmp文件时,遇到报错IMP-00009&IMP,具体报错如图所示: 出现报错的原因可能是dmp文件本身不完整,如果仍要导入数据,可以对imp命令加上commit=yes进行控制,可行的imp导入命令...
3083 0