MLOps : 机器学习运维

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
应用实时监控服务-用户体验监控,每月100OCU免费额度
可观测监控 Prometheus 版,每月50GB免费额度
简介: MLOps : 机器学习运维

@[toc]

MLOps : 机器学习运维


产生背景

因为存在如下的背景,所以才有了 MLOps 的需求

第一,跨团队协作难度大。机器学习项目生命周期中涉及业务、数据、算法、研发、运维等多团队,团队间缺乏相同的技术和业务背景知识作为协作基础,从而带来沟通屏障。

第二,过程和资产管理欠缺。模型生产过程无标准化管理,导致AI资产的价值无法有效发挥,原因在于:一是生产过程冗长难管理,AI模型生产过程涉及的环境、流程复杂,
各部门习惯于小作坊的生产模式,重复造轮子现象普遍;二是AI资产无集中共享机制,组织内数据、特征、模型等碎片化AI资产无法共享使用,优秀实践经验难以沉淀。

第三,生产和交付周期长。机器学习模型生产和交付是一个漫长、复杂又易出错的过程,且耗费的时间成本较高。据Algorithmia报告显示,38%的企业花费超过50%的时间在模型部署上。

MLOpos 做了什么事情

1、MLOps通过连接模型构建团队、业务团队及运维团队,为机器学习模型全生命周期建设标准化、自动化、可持续改进的过程管理体系
2、使组织规模化、高质量、高效率、可持续地生产机器学习模型

MLOpos 是解决 AI 生产国产中的管理问题

相关文章
|
17天前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
智能化运维:机器学习在故障预测和自动化响应中的应用
43 4
|
1月前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
【10月更文挑战第1天】智能化运维:机器学习在故障预测和自动化响应中的应用
69 3
|
3月前
|
机器学习/深度学习 缓存 运维
智能化运维:机器学习在IT管理中的革命性应用
【8月更文挑战第28天】 随着技术的飞速发展,传统的IT运维方式已不能满足现代企业的需求。智能化运维,通过整合机器学习技术,正在重塑我们对IT基础设施的管理方法。本文将探讨智能化运维的概念、实施步骤及其带来的变革,同时分享一些成功案例,以期为读者提供一种全新的视角和思考路径。
63 6
|
3月前
|
机器学习/深度学习 运维 监控
智能化运维:机器学习在故障预测和自动化响应中的应用
【8月更文挑战第2天】 本文探讨了将机器学习技术应用于IT运维领域,特别是在故障预测和自动化响应方面的潜力与挑战。通过分析机器学习如何优化传统运维流程,我们揭示了数据驱动的决策制定对提升系统稳定性和效率的影响。文章进一步讨论了实施机器学习模型时可能遇到的技术和非技术性问题,并提出了相应的解决策略。最后,我们反思了这一转变对IT专业人员技能要求的影响,以及如何在不断变化的技术环境中维持竞争力。
71 4
|
3月前
|
机器学习/深度学习 人工智能 运维
智能运维:利用机器学习提升IT基础设施管理
在数字化转型的浪潮中,企业IT基础设施的复杂性不断攀升,传统的运维方法已难以应对日益增长的需求与挑战。本文将探讨如何通过机器学习技术实现智能化运维,提高故障预测的准确性,优化资源配置,并降低运营成本。我们将分析机器学习在智能运维中的应用案例,以及实施过程中可能遇到的挑战和解决方案。
|
3月前
|
机器学习/深度学习 数据采集 运维
预见未来:机器学习引领运维革命——故障预测与自动化响应的新篇章
【8月更文挑战第2天】智能化运维:机器学习在故障预测和自动化响应中的应用
60 1
|
3月前
|
机器学习/深度学习 运维 算法
智能运维:利用机器学习优化IT基础设施管理
在数字化浪潮中,企业对IT基础设施的依赖日益加深。传统的运维模式已难以应对复杂多变的技术环境,而智能运维(AIOps)应运而生。本文将探讨如何借助机器学习技术,提升运维效率,确保系统稳定性,并预测潜在问题,从而为企业带来持续的业务创新和价值增长。
43 0
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
28 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
29天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)