MLOps : 机器学习运维

简介: MLOps : 机器学习运维

@[toc]

MLOps : 机器学习运维


产生背景

因为存在如下的背景,所以才有了 MLOps 的需求

第一,跨团队协作难度大。机器学习项目生命周期中涉及业务、数据、算法、研发、运维等多团队,团队间缺乏相同的技术和业务背景知识作为协作基础,从而带来沟通屏障。

第二,过程和资产管理欠缺。模型生产过程无标准化管理,导致AI资产的价值无法有效发挥,原因在于:一是生产过程冗长难管理,AI模型生产过程涉及的环境、流程复杂,
各部门习惯于小作坊的生产模式,重复造轮子现象普遍;二是AI资产无集中共享机制,组织内数据、特征、模型等碎片化AI资产无法共享使用,优秀实践经验难以沉淀。

第三,生产和交付周期长。机器学习模型生产和交付是一个漫长、复杂又易出错的过程,且耗费的时间成本较高。据Algorithmia报告显示,38%的企业花费超过50%的时间在模型部署上。

MLOpos 做了什么事情

1、MLOps通过连接模型构建团队、业务团队及运维团队,为机器学习模型全生命周期建设标准化、自动化、可持续改进的过程管理体系
2、使组织规模化、高质量、高效率、可持续地生产机器学习模型

MLOpos 是解决 AI 生产国产中的管理问题

相关文章
|
8月前
|
机器学习/深度学习 运维 资源调度
运维,不再“救火”!机器学习如何让故障预警成为现实?
运维,不再“救火”!机器学习如何让故障预警成为现实?
288 2
|
10月前
|
机器学习/深度学习 人工智能 运维
机器学习+自动化运维:让服务器自己修Bug,运维变轻松!
机器学习+自动化运维:让服务器自己修Bug,运维变轻松!
447 14
|
11月前
|
机器学习/深度学习 数据采集 运维
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
570 19
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
373 12
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
智能化运维:机器学习在故障预测和自动化响应中的应用
260 4
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
【10月更文挑战第1天】智能化运维:机器学习在故障预测和自动化响应中的应用
216 3
|
机器学习/深度学习 缓存 运维
智能化运维:机器学习在IT管理中的革命性应用
【8月更文挑战第28天】 随着技术的飞速发展,传统的IT运维方式已不能满足现代企业的需求。智能化运维,通过整合机器学习技术,正在重塑我们对IT基础设施的管理方法。本文将探讨智能化运维的概念、实施步骤及其带来的变革,同时分享一些成功案例,以期为读者提供一种全新的视角和思考路径。
170 6
|
3月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1393 6
|
8月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
545 8