LeetCode 0059.螺旋矩阵II【Go】

简介: LeetCode 0059.螺旋矩阵II【Go】

螺旋矩阵II

LeetCode59. 螺旋矩阵 II

题目描述

给你一个正整数 n ,生成一个包含 1n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix

示例1:

输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]

示例2:

输入:n = 1
输出:[[1]]

思路

题目要求

  • 输入一个正整数n,要求生成一个二维矩阵,元素按顺时针螺旋顺序排列。
  • 返回生成的二维矩阵

模拟顺时针画矩阵的过程:

  • 填充上行从左到右
  • 填充右列从上到下
  • 填充下行从右到左
  • 填充左列从下到上

由外向内一圈一圈这么画下去。

生成一个 n×n 空矩阵 matrix,随后模拟整个向内环绕的填入过程:

  • 定义左右上下边界 left=0,right=n-1,top=0,bottom=n-1,初始值 num = 1,迭代终止值 target = n * n
  • num <= tar时,始终按照从左到右从上到下从右到左从下到上填入顺序循环,每次填入后:
  • 执行 num += 1:得到下一个需要填入的数字;
  • 更新边界
  • 从左到右填完后,上边界top += 1,相当于上边界向内缩 1
  • 从上到下填完后,右边界right -= 1,相当于右边界向内缩 1
  • 从右到左填完后,下边界bottom -= 1,相当于下边界向内缩 1。
  • 从下到上填完后,左边界left += 1,相当于左边界向内缩 1。
  • 最终返回 matrix 即可。

注意

  • 填入一个数字后记得num+1
  • 填入一行/列后记得更新边界

代码

Go

func generateMatrix(n int) [][]int {
  left, right, top, bottom := 0, n-1, 0, n-1
  num := 1
  target := n * n
  matrix := make([][]int, n)
  for i := 0; i < n; i++ {
    matrix[i] = make([]int, n)
  }
  for num <= target {
    // left to right
    for i := left; i <= right; i++ {
      matrix[top][i] = num
      num++
    }
    top++
    // top to bottom
    for i := top; i <= bottom; i++ {
      matrix[i][right] = num
      num++
    }
    right--
    // right to left
    for i := right; i >= left; i-- {
      matrix[bottom][i] = num
      num++
    }
    bottom--
    // bottom to top
    for i := bottom; i >= top; i-- {
      matrix[i][left] = num
      num++
    }
    left++
  }
  return matrix
}

Link

GitHub

目录
相关文章
|
6月前
|
算法 Go 索引
【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)
本文详细解析了力扣第45题“跳跃游戏II”的三种解法:贪心算法、动态规划和反向贪心。贪心算法通过选择每一步能跳到的最远位置,实现O(n)时间复杂度与O(1)空间复杂度,是面试首选;动态规划以自底向上的方式构建状态转移方程,适合初学者理解但效率较低;反向贪心从终点逆向寻找最优跳点,逻辑清晰但性能欠佳。文章对比了各方法的优劣,并提供了Go语言代码实现,助你掌握最小跳跃次数问题的核心技巧。
252 15
|
6月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
412 90
|
5月前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
273 14
|
4月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
161 1
|
4月前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
171 1
|
5月前
|
存储 算法 Go
【LeetCode 热题100】17:电话号码的字母组合(详细解析)(Go语言版)
LeetCode 17题解题思路采用回溯算法,通过递归构建所有可能的组合。关键点包括:每位数字对应多个字母,依次尝试;递归构建下一个字符;递归出口为组合长度等于输入数字长度。Go语言实现中,使用map存储数字到字母的映射,通过回溯函数递归生成组合。时间复杂度为O(3^n * 4^m),空间复杂度为O(n)。类似题目包括括号生成、组合、全排列等。掌握回溯法的核心思想,能够解决多种排列组合问题。
151 11
|
5月前
|
Go
【LeetCode 热题100】155:最小栈(详细解析)(Go语言版)
本文详细解析了力扣热题155:最小栈的解题思路与实现方法。题目要求设计一个支持 push、核心思路是使用辅助栈法,通过两个栈(主栈和辅助栈)来维护当前栈中的最小值。具体操作包括:push 时同步更新辅助栈,pop 时检查是否需要弹出辅助栈的栈顶,getMin 时直接返回辅助栈的栈顶。文章还提供了 Go 语言的实现代码,并对复杂度进行了分析。此外,还介绍了单栈 + 差值记录法的进阶思路,并总结了常见易错点,如 pop 操作时忘记同步弹出辅助栈等。
170 6
|
5月前
|
Go 索引
【LeetCode 热题100】739:每日温度(详细解析)(Go语言版)
这篇文章详细解析了 LeetCode 第 739 题“每日温度”,探讨了如何通过单调栈高效解决问题。题目要求根据每日温度数组,计算出等待更高温度的天数。文中推荐使用单调递减栈,时间复杂度为 O(n),优于暴力解法的 O(n²)。通过实例模拟和代码实现(如 Go 语言版本),清晰展示了栈的操作逻辑。此外,还提供了思维拓展及相关题目推荐,帮助深入理解单调栈的应用场景。
176 6
|
4月前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
114 0
|
4月前
|
算法 Go 索引
【LeetCode 热题100】回溯:括号生成 & 组合总和(力扣22 / 39 )(Go语言版)
本文深入解析了LeetCode上的两道经典回溯算法题:**22. 括号生成**与**39. 组合总和**。括号生成通过维护左右括号数量,确保路径合法并构造有效组合;组合总和则允许元素重复选择,利用剪枝优化搜索空间以找到所有满足目标和的组合。两者均需明确路径、选择列表及结束条件,同时合理运用剪枝策略提升效率。文章附有Go语言实现代码,助你掌握回溯算法的核心思想。
140 0