week现货合约跟单系统开发(对接API火币/币安/OK/欧易交易所)详情介绍/开发运营版/案例设计/方案介绍/源码部署

简介: 量化交易系统是基于算法和模型的自动化交易系统,可以通过计算机程序快速进行市场分析、预测和交易决策。

  量化交易系统是基于算法和模型的自动化交易系统,可以通过计算机程序快速进行市场分析、预测和交易决策。下面介绍量化交易系统开发的步骤和注意事项:

  策略设计和建模:在量化交易系统开发前,需要先确定交易策略并进行建模。Strategies can be designed based on historical data and market conditions,including various types such as trend trading and market arbitrage.During the modeling process,it is necessary to select appropriate mathematical models and algorithms,and conduct testing and verification.

  系统框架搭建:根据策略设计和数据采集,需要构建系统框架,Including data storage and management,transaction execution,risk control,and other aspects.同时,还需要选择适当的技术框架和编程语言,如Python、Java等。

  算法实现和优化:在系统框架搭建好后,需要进行算法实现和优化。This process requires the implementation of existing models and algorithms,and Code refactoring and performance optimization to improve the efficiency and stability of the system.

  def all_sel_current_code(codes,names,writefileName='sel_codes.csv',writefile=True):

  path='./选择/'

  dir=Path(path)

  if not dir.exists():

  os.mkdir(dir)

  begin_count=-200

  end_count=-1

  days=20

  name_array=np.array([])

  code_array=np.array([])

  date_array=np.array([])

  for i in range(len(codes)):

  code=codes<i>

  name=names<i>

  #判断条件选择

  ret,date=sel_current_code(code,name)

  if ret:

  name_array=np.append(name_array,name)

  code_array=np.append(code_array,code)

  date_array=np.append(date_array,date)

  earnings,suc,fail,index_array,pct_array,hold_days=test(code,name=name,days=days,begin_count=begin_count,end_count=end_count)

  if suc==-1:

  continue

  name=str.replace(name,'*','')

  if earnings>0:

  file_dir=path+'CurentAAA%s_%s%d%d++%.1f++%.1f.png'%(code,name,suc,fail,suc*100/(fail+suc+1),earnings)

  else:

  file_dir=path+'CurentBBB%s_%s%d%d——%.1f——%.1f.png'%(code,name,suc,fail,suc*100/(fail+suc+1),earnings)

  plot_pct(code,index_array,pct_array,begin_count=begin_count,end_count=end_count,writefilename=file_dir)

  print("codes%s%s earnings%.2f"%(code,name,earnings))

  data=[code_array,name_array,date_array]

  data=np.transpose(data)#矩阵转置

  ser2=pd.DataFrame(data,columns=['ts_code','name','date'])

  if writefile:

  ser2.to_csv(writefileName,encoding="utf_8_sig")

  #绘制指定代码价格图

  def plot_pct(ts_code,index_array,pct_array,begin_count,end_count=-1,writefilename='temp.png'):

  df=load_data(ts_code)

  closes=df['close'].values

  ma5=df['ma5'].values

  ma10=df['ma10'].values

  ma20=df['ma20'].values

  if len(closes)<abs(begin_count):

  print("TTTTTTT",len(closes),begin_count,ts_code)

  begin_count=int(len(closes)*-1)

  if len(closes)<end_count*-1:

  end_count=-1

  if begin_count+30>end_count:

  return

  x_array=np.linspace(begin_count,end_count,end_count-begin_count,dtype=np.int)

  l=len(ma5)

  x=len(x_array)

  print('len',l,x)

  ma5Mean_array=np.linspace(ma5.mean(),ma5.mean(),end_count-begin_count)

  #plt.plot(x_array,closes,c='black')

  start_date=df['trade_date'].values[begin_count]

  end_date=df['trade_date'].values[end_count]

  print(start_date,end_date)

  name=get_code_name(ts_code)

  money_df=get_dates_money(code=ts_code,name=name)

  #print(money_df)

  name=name.replace('*',"")

  #money_df.to_csv(ts_code+name+"moneydf.csv",encoding='utf_8_sig')

  money_dates=money_df['trade_date'].values

相关文章
|
4月前
|
监控 安全 API
什么是API?进行API对接的5大常见误区!
API是软件间通信的桥梁,API对接则实现系统间数据互通。广泛应用于内外部系统集成,提升效率、降低成本、增强竞争力。本文详解其概念、场景、方法及常见误区。
什么是API?进行API对接的5大常见误区!
|
4月前
|
JSON 监控 API
Shopee:对接海外仓API实现本地发货,优化物流时效
Shopee卖家可通过对接海外仓API实现本地发货,将物流时效从10-15天缩短至3-5天,显著提升买家体验与店铺转化率。本文详解API对接原理、步骤及代码示例,助力优化跨境物流效率。
220 1
|
4月前
|
JSON 安全 测试技术
医药电商:对接处方审核API实现线上购药合规化
医药电商需合规销售处方药。本文详解对接处方审核API,实现自动化真实性验证、用药合理性审查与全程留痕,满足监管要求。提升审核效率至3秒内,错误率低于0.5%,降低人力成本40%。构建审核闭环,保障安全与体验双赢。(238字)
468 0
|
3月前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
3月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
4月前
|
数据可视化 测试技术 API
从接口性能到稳定性:这些API调试工具,让你的开发过程事半功倍
在软件开发中,接口调试与测试对接口性能、稳定性、准确性及团队协作至关重要。随着开发节奏加快,传统方式已难满足需求,专业API工具成为首选。本文介绍了Apifox、Postman、YApi、SoapUI、JMeter、Swagger等主流工具,对比其功能与适用场景,并推荐Apifox作为集成度高、支持中文、可视化强的一体化解决方案,助力提升API开发与测试效率。
|
3月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
4月前
|
JSON 前端开发 API
如何调用体育数据足篮接口API
本文介绍如何调用体育数据API:首先选择可靠服务商并注册获取密钥,接着阅读文档了解基础URL、端点、参数及请求头,然后使用Python等语言发送请求、解析JSON数据,最后将数据应用于Web、App或分析场景,同时注意密钥安全、速率限制与错误处理。
497 152
|
5月前
|
JSON 算法 安全
淘宝商品详情API接口系列,json数据返回
淘宝开放平台提供了多种API接口用于获取商品详情信息,主要通过 淘宝开放平台(Taobao Open Platform, TOP) 的 taobao.tbk.item.info.get(淘宝客商品详情)或 taobao.item.get(标准商品API)等接口实现。以下是关键信息及JSON返回示例:
|
3月前
|
人工智能 自然语言处理 测试技术
Apipost智能搜索:只需用业务语言描述需求,就能精准定位目标接口,API 搜索的下一代形态!
在大型项目中,API 数量庞大、命名不一,导致“找接口”耗时费力。传统工具依赖关键词搜索,难以应对语义模糊或命名不规范的场景。Apipost AI 智能搜索功能,支持自然语言查询,如“和用户登录有关的接口”,系统可理解语义并精准匹配目标接口。无论是新人上手、模糊查找还是批量定位,都能大幅提升检索效率,降低协作成本。从关键词到语义理解,智能搜索让开发者少花时间找接口,多专注核心开发,真正实现高效协作。