3.2 单边循环法
双边循环法从数组的两边交替遍历原数组,虽然更加直观,但是代码实现相对繁琐。而单边循环法则简单得多,只从数组的一边对元素进行遍历和交换。
当然,两种方法的目的是相同的,即:每轮排序后 基准值的左边都是小于或等于基准值的元素,基准值的右边是大于或等于基准值的元素。
3.2.1 思路分析
3.2.1.1 对于每轮排序的操作
- 初始化
- 将头部元素作为
基准值 pivot
,其中 pivot 的值是 数组索引。 - 定义
mark指针
初始时指向头部位置,作用是:保证 索引从头部位置的下一个位置到mark位置 的元素都是小于基准元素值的。font - 定义
travel指针
初始时指向头部位置的下一个位置,作用是:遍历当前数组
- travel指针向后移动,找到第一个小于基准元素值的元素 或 指针超出数组最大索引,就停止移动
- 判断 travel 是否超出当前数组最大索引
- 如果未超出:mark指针向后移动一位,travel 和 mark 指针指向的值进行交换,再回到第二步继续循环操作
首先我们需要明白排序的目的:把所有比基准值小或等于的元素放到数组左边,把所有比基准值大或等于的元素放到数组左边。
travel指针 每次找到一个比基准值小的,就将 此时travel指向的元素放到数组左边,这时候我们的mark指针就起到了作用。
我们规定并始终保证 索引从头部位置的下一个位置到mark位置 的元素都是小于基准元素值的。 。因此将 mark指针 每次向后移动一位后,指向的元素一定是travel指针跳过的那些大于等于基准元素值的元素。此时将 mark指向的值和travel指向的值交换可以达到两个目的:
- 比基准元素值小的移到了左边,即再次保证了 索引从头部位置的下一个位置到mark位置 的元素都是小于基准元素值的。
- 比基准元素值大或等于的(不包括头部元素)移到了右边。
- 如果超出:将 mark 指针指向的值 与 头部元素值(基准元素值)进行交换,本次排序完成。
📍 对于 存在上一次循环,即mark指针不是指向头部元素的分析:
因为 mark指针 在完成上一轮循环的交换后一定是指向小于基准值的元素,保证了索引从头部位置的下一个位置到mark位置 的元素都是小于基准元素值的。那么mark指针的右边肯定都是大于等于基准值的。
所以,如果我们将 mark 指针指向的值 与 头部元素值(基准元素值)进行交换,可以达到三个效果:
- 索引从头部位置到(mark-1)位置 的元素都是小于基准索引值的
- mark 位置的元素值变成了 基准元素值
- 索引从(mark+1)位置到 尾部位置 的元素都是大于等于基准索引值的
我们也就达到了排序的目的:每轮排序后 基准值的左边都是小于或等于基准值的元素,基准值的右边是大于或等于基准值的元素。
📍 对于 不存在上一次循环,即mark指针指向的是头部元素的分析:
我们依旧可以进行交换,自己交换自己不会改变什么。并且这种情况说明当前数组并不存在比基准元素值小的元素,使得头部元素的右边都是大于等于基准元素值的。
3.2.1.2 递归完成对子数组的排序
我们需要明白,双边循环法和单边循环法不同的只是每一轮排序的方式,但最终的效果都会是一样的,即每轮排序后 基准值的左边都是小于或等于基准值的元素,基准值的右边是大于或等于基准值的元素。
因此,我们在之前双边循环法里的步骤二的代码实现并不需要改变,只需要改变双边循环法的步骤一的代码实现即可!!!
3.2.2 图解每轮排序操作
对于每轮排序的操作,如果只是文字描述你可能比较难理解,我们对第一次排序的过程进行图解分析,你再结合上面的思路分析,来看看是怎样一个原理与过程:
💬 特别注意观察 索引从头部位置的下一个位置到mark位置 的元素值与基准元素值的大小关系
3.2.3 代码实现
package sort; /** * @author 狐狸半面添 * @create 2022-11-29 2:32 */ public class QuickSort { public static void main(String[] args) { int[] arr = {4, 7, 6, 5, 3, 2, 8, 1}; //对 arr 数组进行排序,指定了要对索引在 [0,arr.length-1] 内的元素进行一轮排序 quickSort(arr, 0, arr.length - 1); //输出:1 2 3 4 5 6 7 8 for (int i : arr) { System.out.print(i + "\t"); } } /** * 功能:对 数组索引在 [first, last] 范围内的元素进行一轮排序 * * @param arr 待排序的数组 * @param first 待排序数组的第一个元素的索引值,我们规定该索引的元素值也是基准值 * @param last 待排序数组的最后一个元素的索引值 */ public static void quickSort(int[] arr, int first, int last) { /* quickSort方法是对 索引在[first, last]范围内的元素进行排序, - 1.如果 first == last 说明此时只有一个元素了,很明显,一个元素是没有排序的必要的,因此直接退出 quickSort 方法即可,递归终止 - 2.如果 first > last 说明此时是没有元素的,那也不需要排序,递归终止 */ if (first >= last) { return; } //定义一个中间变量 int temp; //定义mark指针,初始值为待排序数组的头部 int mark = first; //定义travel指针,初始值为待排序数组的头部位置 + 1,作用是对数组进行遍历 int travel = first + 1; // 遍历当前数组 while (true) { //travel指针向后移动,找到第一个小于基准元素值的元素 或 指针超出数组最大索引,就停止移动 while (travel <= last && arr[travel] >= arr[first]) { travel++; } /* 判断 travel 是否超出当前数组最大索引 - 如果未超出:mark指针向后移动一位,travel 和 mark 指针指向的值进行交换,travel向后移动,再回到第二步继续循环操作 - 如果超出:将 mark 指针指向的值 与 头部元素值(基准元素值)进行交换,本次排序完成。 */ if(travel <= last){ //未超出 mark++; temp = arr[travel]; arr[travel] = arr[mark]; arr[mark] = temp; //发生交换后,travel需要向后移动一位 //这个必须写,是针对于 mark == travel的情况下,arr[travel]<arr[first] //否则下一次 travel <= last && arr[travel] >= arr[first] 仍然为false导致mark超过了travel //最终会导致栈溢出,因此必须写 travel++ travel++; }else{ //超出了 temp = arr[mark]; arr[mark] = arr[first]; arr[first] = temp; break; } } /* 退出了while循环,说明本轮排序已完成 对 [first, last]范围内的元素完成一轮排序后, 此时 左子数组即索引在 [first, mark - 1] 的元素都是小于当前基准元素值的(注意与双边循环法不同,不存在等于基准元素值的,等于的都在右子数组) 右子数组即索引在 [mark + 1, last] 的元素都是大于等于当前基准元素值的 那么我们只需要分别再对左子数组和右子数组分别进行排序即可 */ quickSort(arr, first, mark - 1); quickSort(arr, mark + 1, last); } }
3.2.4 另一种代码实现
根本的思路与第一种是一样的,但是会更为清晰,如果你明白了上面的,那下面的也不会很难理解:
package sort; /** * @author 狐狸半面添 * @create 2022-11-29 2:32 */ public class QuickSort { public static void main(String[] args) { int[] arr = {4, 7, 6, 5, 3, 2, 8, 1}; //对 arr 数组进行排序,指定了要对索引在 [0,arr.length-1] 内的元素进行一轮排序 quickSort(arr, 0, arr.length - 1); //输出:1 2 3 4 5 6 7 8 for (int i : arr) { System.out.print(i + "\t"); } } /** * 功能:对 数组索引在 [first, last] 范围内的元素进行一轮排序 * * @param arr 待排序的数组 * @param first 待排序数组的第一个元素的索引值,我们规定该索引的元素值也是基准值 * @param last 待排序数组的最后一个元素的索引值 */ public static void quickSort(int[] arr, int first, int last) { /* quickSort方法是对 索引在[first, last]范围内的元素进行排序, - 1.如果 first == last 说明此时只有一个元素了,很明显,一个元素是没有排序的必要的,因此直接退出 quickSort 方法即可,递归终止 - 2.如果 first > last 说明此时是没有元素的,那也不需要排序,递归终止 */ if (first >= last) { return; } //定义一个中间变量 int temp; //定义mark指针,初始值为待排序数组的头部 int mark = first; //定义travel指针,初始值为待排序数组的头部位置 + 1,作用是对数组进行遍历 int travel = first + 1; // 遍历当前数组 for(;travel<=last;travel++){ if(arr[travel]<arr[first]){ //找到了比基准元素值小的数,就交换 mark++; temp = arr[travel]; arr[travel] = arr[mark]; arr[mark] = temp; } } //遍历完毕,将 mark指向的值 与 头部元素值(基准元素值)进行交换 temp = arr[mark]; arr[mark] = arr[first]; arr[first] = temp; /* 对 [first, last]范围内的元素完成一轮排序后, 此时 左子数组即索引在 [first, mark - 1] 的元素都是小于当前基准元素值的(注意与双边循环法不同,不存在等于基准元素值的,等于的都在右子数组) 右子数组即索引在 [mark + 1, last] 的元素都是大于等于当前基准元素值的 那么我们只需要分别再对左子数组和右子数组分别进行排序即可 */ quickSort(arr, first, mark - 1); quickSort(arr, mark + 1, last); } }
4.非递归实现双边/单边循环法
我们已经给出了三种递归方式的代码实现,由于递归的代码操作都是一样的,因此在这里我们就只将双边循环法的代码改造为非递归的方式,其他两种也是同理操作即可。
4.1 说明
绝大多数的递归逻辑,都可以使用栈的方式来代替。
代码中一层一层的方法调用,本身就是用来一个方法调用栈。每次进入一个新方法,就相当于入栈;每次有方法返回,就相当于出栈。所以,可以把原来的递归实现转化成一个栈的实现,在栈中存储每一次方法调用的参数。
4.2 代码实现
package sort; import java.util.HashMap; import java.util.Map; import java.util.Stack; /** * @author 狐狸半面添 * @create 2022-11-29 2:32 */ public class QuickSort { public static void main(String[] args) { int[] arr = {4, 7, 6, 5, 3, 2, 8, 1}; //对 arr 数组进行排序,指定了要对索引在 [0,arr.length-1] 内的元素进行一轮排序 quickSortByStack(arr, 0, arr.length - 1); //输出:1 2 3 4 5 6 7 8 for (int i : arr) { System.out.print(i + "\t"); } } public static void quickSortByStack(int[] arr, int first, int last) { //用一个集合栈来代替递归的函数栈 Stack<Map<String, Integer>> quickSortStack = new Stack<>(); //整个数列的起止下标,以 哈希的形式入栈 Map<String, Integer> rootParam = new HashMap<>(2); rootParam.put("firstIndex", first); rootParam.put("lastIndex", last); quickSortStack.push(rootParam); //基准位置索引 int pivot; //循环结束的条件为栈空 while (!quickSortStack.isEmpty()) { Map<String, Integer> param = quickSortStack.pop(); int firstIndex = param.get("firstIndex"); int lastIndex = param.get("lastIndex"); pivot = quickSort(arr, firstIndex, lastIndex); if (pivot != -1) { //将左子数组和右子数组加入到栈中 Map<String, Integer> leftArrParam = new HashMap<>(2); leftArrParam.put("firstIndex", firstIndex); leftArrParam.put("lastIndex", pivot - 1); quickSortStack.push(leftArrParam); Map<String, Integer> rightArrParam = new HashMap<>(2); rightArrParam.put("firstIndex", pivot + 1); rightArrParam.put("lastIndex", lastIndex); quickSortStack.push(rightArrParam); } } } /** * 功能:对 数组索引在 [first, last] 范围内的元素进行一轮排序 * * @param arr 待排序的数组 * @param first 待排序数组的第一个元素的索引值,我们规定该索引的元素值也是基准值 * @param last 待排序数组的最后一个元素的索引值 * @return 最终的基准位置索引 */ public static int quickSort(int[] arr, int first, int last) { /* quickSort方法是对 索引在[first, last]范围内的元素进行排序, - 1.如果 first == last 说明此时只有一个元素了,很明显,一个元素是没有排序的必要的,因此直接退出 quickSort 方法即可 - 2.如果 first > last 说明此时是没有元素的,那也不需要排序 */ if (first >= last) { return -1; } //定义一个中间变量 int temp; //定义左指针,初始值为待排序数组的头部 int left = first; //定义右指针,初始值为待排序数组的尾部 int right = last; while (true) { //先判断右指针和基准值,如果右指针指向的元素值 大于等于基准元素值 或者 不与左指针重合 就向前移动,否则停止移动。 while (arr[right] >= arr[first] && left < right) { right--; } //再判断左指针和基准值,如果左指针指向的元素值 小于等于基准元素值 或者 不与右指针重合 就向后移动,否则停止移动。 while (arr[left] <= arr[first] && left < right) { left++; } //判断是否重合 if (left < right) { //1.如果没有重合,就交换左右指针的值,继续下一次循环移动指针 temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } else { //2.如果重合,则将重合指针索引位置的元素值与基准数位置的值进行交换,本轮排序结束 temp = arr[left]; arr[left] = arr[first]; arr[first] = temp; break; } } return left; } }
5.快速排序在一个极端情况下的问题
在我们之前写的规则与代码中,都是将数组的第一个元素作为基准。这种选择在绝大多数情况下是没有问题的。但是,如果有一个原本是逆序的队列,期望使用快速排序形成顺序队列,会发生什么呢?
可以看到,整个数组并没有被很好的分成两半,基准元素的最终位置总是在最左边或者最右边,而不在中间,无法发挥分治法的优势。因此在这种极端情况下,快速排序需要进行 n 轮,时间复杂度退化为 O ( n 2 ) O(n^2)O(n2)
应该怎样避免呢?我们可以随机选择一个元素作为基准元素,并让该基准元素和数组首元素交换位置。这样首元素就成了基准元素。
这样一来,即使在数列完全逆序的情况下,也能有效地将数列分成两部分。
当然,即使是随机选择基准元素,也会有极小的可能宣导数列的最小值或最大值,同样会影响分治的效果。
6.快速排序的时间复杂度
通过上述的分析,我们就可以知道快速排序的平均时间复杂度为 O ( n l o g n ) O(nlogn)O(nlogn) ,但最坏情况下的时间复杂度是 O ( n 2 ) O(n^2)O(n2)