【MATLAB第21期】基于matlab的MWOA-LSTM-Attention注意力机制结合的回归预测模型

简介: 【MATLAB第21期】基于matlab的MWOA-LSTM-Attention注意力机制结合的回归预测模型

【MATLAB第21期】基于matlab的MWOA-LSTM-Attention注意力机制结合的回归预测模型


运行环境:


matlab2020a,cpu


数据:


本文采用600行6输入1输出数据样本,其中前500(90%训练,10%验证),后100进行测试。

为了简化数据 ,对下图数据缩小100倍值 。

思路:

LSTM_Attention的代码网上基本有售卖,本文在基础上进行优化,即通过嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法(MWOA)以及普通鲸鱼优化算法WOA优化LSTM_Attention模型的3个超参数,分别为隐含层神经元数量、最小批处理数量,最大训练次数,目标函数选用测试集的1-R2作为评价指标,3个超参数上下限为:

lb = [20 5 5 ];%三个参数的下限    隐含层神经元数量  最小批样本处理数量  最大训练次数 
ub = [90 20 40 ];%三个参数的上限

参数设置:

%LSTM结构参数
LearnRateDropFactor = 0.9;%学习率下降因子
LearnRate = 0.01;%初始学习率
LearnRatestep=5;%每5轮更新学习率
executionEnvironment = "auto";%运行环境为自动
validatasize=10%;%训练过程中验证集比例为10%
validationFrequency = 10;%每10次训练验证1次
gradientDecayFactor = 0.9;%梯度衰减因子为0.9
squaredGradientDecayFactor = 0.999;%平方梯度衰减因子为0.999
gradientThreshold = 6;%梯度阈值为6
loss = mse;%训练过程中损失函数为mse函数 
%WOA参数
SearchAgents_no = 5; % 种群数量  5
Max_iteration = 5; % 迭代次数   5

注意力机制部分代码:

%% 输入部分
% Lstm_Y   LSTM输出序列(CBT)
% Train_Y  训练样本标签
% params   训练权重参数
% state    状态变量
%% 需要学习的参数
weight = params.cnn.weight;
recurrentWeights = params.lstm.recurrentWeights;
bias = params.lstm.bias;
%% 不同批次间传递的参数(这里假设每一轮epoch中,不同Batch间的state是传递的,但不学习;
%   不同epoch之间的state重置)
h0 = state.lstm.h0;
c0 = state.lstm.c0;
[Lstm_Y,h0,c0] = lstm(Train_X,h0,c0,weight,recurrentWeights,bias);
%% Attention
Attentionweight  = params.attention.weight; % 计算得分权重
Ht = Lstm_Y(:,:,end);       % 参考向量
%% Attention输出
weight1 = params.attenout.weight1;
bias1 = params.attenout.bias1;
weight2 = params.attenout.weight2;
bias2 = params.attenout.bias2;
Hthat = fullyconnect(Vt,weight1,bias1) + fullyconnect(Ht,weight2,bias2);
%% 全连接层前置层(降维)
LastWeight = params.fullyconnect.weight1;
LastBias = params.fullyconnect.bias1 ;
FullyconnectInput = fullyconnect(Hthat,LastWeight,LastBias);
FullyconnectInput = relu(FullyconnectInput);
%% Fullyconnect输入参数
fullyweight = params.fullyconnect.weight2;
fullybias = params.fullyconnect.bias2;
output_Y = fullyconnect(FullyconnectInput,fullyweight,fullybias);
output_Y = squeeze(output_Y);
output_Y = relu(output_Y);

预测结果:

优化前超参数设置为【50,10,10】即神经元50个,训练次数及最小批为10.

WOA优化后为【64 6 11】

MWOA优化后为【30 9 18】

分析:

案例数据精度仍存在一些不足,除了超参数范围对结果的影响,进化算法选取及参数设置以外,数据的选择,目标函数的选择以及运行环境(CPU/GPU)对结果影响也较大。 研究发现,通过试验发现GPU的精度要明显高一些,其次,选择1-R2作为目标函数比选择RMSE均方根误差作为目标函数的精度高一些。

代码获取:

代码有偿。有意向后台(非评论区)私聊回复“注意力机制”,即可获得下载链接。创作不易,感谢理解。



相关文章
|
2月前
|
传感器 算法 安全
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
105 4
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
173 2
|
26天前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
|
2月前
|
传感器 机器学习/深度学习 编解码
【电缆】中压电缆局部放电的传输模型研究(Matlab代码实现)
【电缆】中压电缆局部放电的传输模型研究(Matlab代码实现)
120 3
|
2月前
|
机器学习/深度学习 数据采集 算法
基于VMD-CPA-KELM-IOWAl-CSA-LSSVM碳排放的混合预测模型研究(Matlab代码实现)
基于VMD-CPA-KELM-IOWAl-CSA-LSSVM碳排放的混合预测模型研究(Matlab代码实现)
130 5
|
2月前
|
传感器 资源调度 算法
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)
基于无迹卡尔曼滤波(UKF)与模型预测控制(MPC)的多无人机避撞研究(Matlab代码实现)
143 1
|
2月前
|
机器学习/深度学习 算法 新能源
【无功优化】“碳中和”目标下电气互联系统有功-无功协同优化模型(Matlab代码实现)
【无功优化】“碳中和”目标下电气互联系统有功-无功协同优化模型(Matlab代码实现)
|
2月前
|
机器学习/深度学习 数据采集 并行计算
基于DTW(动态弯曲距离)-Kmeans的时间序列聚类分析模型(Matlab代码实现)
基于DTW(动态弯曲距离)-Kmeans的时间序列聚类分析模型(Matlab代码实现)
272 1
|
2月前
|
机器学习/深度学习 数据采集 传感器
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
184 0
|
2月前
|
机器学习/深度学习 数据采集 算法
基于VMD-LSTM的电力负荷预测研究(Matlab代码实现)
基于VMD-LSTM的电力负荷预测研究(Matlab代码实现)
247 0

热门文章

最新文章