【MATLAB第19期】基于贝叶斯Bayes算法优化CNN-LSTM长短期记忆网络的单列时间序列模型及多输入单输出回归预测模型

简介: 【MATLAB第19期】基于贝叶斯Bayes算法优化CNN-LSTM长短期记忆网络的单列时间序列模型及多输入单输出回归预测模型

基于贝叶斯Bayes算法优化CNN-LSTM长短期记忆网络的单列时间序列模型及多输入单输出回归预测模型


前言


前面在【MATLAB第8期】讲解了基于贝叶斯Bayes算法优化LSTM长短期记忆网络的时间序列预测模型,即单输入数据时间序列预测,见本人CSDN主页。


前面在【MATLAB第10期】讲解了基于贝叶斯Bayes算法优化LSTM长短期记忆网络的多输入单输出回归预测模型思路框架,见本人CSDN主页。


思路


本文分别使用单列时间序列数据及多输入单输出数据,进行BO-CNNLSTM预测。贝叶斯原理及内容不多介绍。


1.时间序列预测模型


时间序列数据:单列数据

超参数优化:有大量的超参数可供调整和优化,使用贝叶斯优化来优化CNN-LSTM参数

optimVars = [
    optimizableVariable('NoFilter1',[8 64],'Type','integer')                         %卷积层1卷积核数量 
    optimizableVariable('NoFilter2',[8 64],'Type','integer')                         %卷积层2卷积核数量
    optimizableVariable('FilterSize1',[3 16],'Type','integer')                       %卷积层1卷积核大小
    optimizableVariable('FilterSize2',[3 16],'Type','integer')                       %卷积层2卷积核大小
    optimizableVariable('Lag',[3 9],'Type','integer')                                %时间滞后阶数范围                 
    optimizableVariable('MiniBatchSize',{'16' '32' '48' },'Type','categorical')      %批处理范围选择 
    optimizableVariable('learningrate',[1e-5 1e-1],'Type','real',"Transform","log")];%学习率优化选择

贝叶斯优化次数:10

贝叶斯优化结果:(参数简化,如最大运行时间仅设置为10*60)

测试集MAE=

1.3433

测试集RMSE=

1.9390


2.回归预测模型


使用多输入单输出数据

80%训练 20%测试

超参数优化:有大量的超参数可供调整和优化,使用贝叶斯优化来优化CNN-LSTM参数

%% 优化CNNLSTM结构参数


optimVars = [
    optimizableVariable('numHiddenUnits1',[50 200],'Type','integer')% LSTM第一层隐含层神经元数
    optimizableVariable('numHiddenUnits2',[50 200],'Type','integer')% LSTM第二层隐含层神经元数
    optimizableVariable('NoFilter1',[8 64],'Type','integer') %卷积层卷积核数量 
    optimizableVariable('FilterSize1',[3 16],'Type','integer')%卷积层卷积核大小
  ];

**


预测结果:

**


CNNLSTM训练集均方根误差(RMSE):3.2152

CNNLSTM训练集平均绝对误差(MAE):2.5149

CNNLSTM训练集平均相对百分误差(MAPE):5.0728%

CNNLSTM训练集R-square决定系数(R2):0.98159

CNNLSTM测试集均方根误差(RMSE):2.9023

CNNLSTM测试集平均绝对误差(MAE):2.1754

CNNLSTM测试集平均相对百分误差(MAPE):3.4288%

CNNLSTM测试集R-square决定系数(R2):0.96609

BO-CNNLSTM训练集均方根误差(RMSE):1.6549

BO-CNNLSTM训练集平均绝对误差(MAE):1.2913

BO-CNNLSTM训练集平均相对百分误差(MAPE):2.9743%

BO-CNNLSTM训练集R-square决定系数(R2):0.99484

BO-CNNLSTM测试集均方根误差(RMSE):2.4997

BO-CNNLSTM测试集平均绝对误差(MAE):2.098

BO-CNNLSTM测试集平均相对百分误差(MAPE):3.5159%

BO-CNNLSTM测试集R-square决定系数(R2):0.98186


相关文章
|
26天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
152 0
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
181 3
|
2月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
114 6
|
26天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
126 8
|
26天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
127 8
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
207 14
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
173 2
|
26天前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
105 0

热门文章

最新文章