【MATLAB第7期】基于MATLAB的6种回归预测模型对比(BP、GABP、RBF、RF、libsvm、CNN))

简介: 【MATLAB第7期】基于MATLAB的6种回归预测模型对比(BP、GABP、RBF、RF、libsvm、CNN))

1.BP

训练集数据的R2为:0.99943

测试集数据的R2为:0.99728

训练集数据的MAE为:0.10596

测试集数据的MAE为:0.23987

训练集数据的MBE为:-0.0056791

测试集数据的MBE为:-0.05721


2.libsvm


训练集数据的R2为:0.99788


测试集数据的R2为:0.99122


训练集数据的MAE为:0.34442


测试集数据的MAE为:0.47595


训练集数据的MBE为:0.01121


测试集数据的MBE为:-0.10039


3.GABP


训练集数据的R2为:0.99318


测试集数据的R2为:0.98814


训练集数据的MAE为:0.30807


测试集数据的MAE为:0.63106


训练集数据的MBE为:-0.043444


测试集数据的MBE为:-0.037011


4.RF


训练集数据的R2为:0.87434


测试集数据的R2为:0.6502


训练集数据的MAE为:1.915


测试集数据的MAE为:4.2236


训练集数据的MBE为:-0.0039531


测试集数据的MBE为:0.86543


5.RBF


训练集数据的R2为:0.99775


测试集数据的R2为:0.98085


训练集数据的MAE为:0.29372


测试集数据的MAE为:0.67517


训练集数据的MBE为:-0.00062484


测试集数据的MBE为:-0.13419


6.CNN


训练集数据的R2为:0.9549


测试集数据的R2为:0.95287


训练集数据的MAE为:1.2584


测试集数据的MAE为:1.3315


训练集数据的MBE为:0.36938


测试集数据的MBE为:-0.010326


相关文章
|
10天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
8天前
|
算法 数据安全/隐私保护
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
24天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
12天前
|
算法 数据处理 数据安全/隐私保护
分别通过LS和RML进行模型参数辨识matlab仿真
本程序通过最小二乘法(LS)和递归最大似然估计(RML)进行模型参数辨识,并在MATLAB2022A中仿真。仿真输出包括参数辨识误差及收敛值。程序展示了两种方法的参数估计值及其误差收敛情况,适用于控制系统设计与分析。最小二乘法适合离线批量处理,而RML则适用于实时在线处理。核心代码实现了LS辨识,并绘制了参数估计值和误差变化图。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。