线性回归 特征扩展的原理与python代码的实现

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 在线性回归中,多项式扩展是种比较常见的技术,可以通过增加特征的数量和多项式项的次数来提高模型的拟合能力。举个例子,多项式扩展可以将一个包含 n 个特征的样本向量 x 扩展为一个包含 k 个特征的样本向量,其中 k 可以是 n 的任意多项式。例如,如果我们使用二次多项式扩展,可以将样本向量[x1, x2]扩展为一个包含原始特征和交叉项的新特征向量,例如 [x1, x2, x1^2, x2^2, x1*x2]。这些新特征可以捕捉到更丰富的特征组合和非线性关系,从而提高模型的拟合能力。

1 多项式扩展的作用


在线性回归中,多项式扩展是种比较常见的技术,可以通过增加特征的数量和多项式项的次数来提高模型的拟合能力。


举个例子,多项式扩展可以将一个包含 n 个特征的样本向量 x 扩展为一个包含 k 个特征的样本向量,其中 k 可以是 n 的任意多项式。例如,如果我们使用二次多项式扩展,可以将样本向量[x1, x2]扩展为一个包含原始特征和交叉项的新特征向量,例如 [x1, x2, x1^2, x2^2, x1*x2]。这些新特征可以捕捉到更丰富的特征组合和非线性关系,从而提高模型的拟合能力。


在多项式扩展后,我们可以使用线性回归模型来拟合扩展后的数据,并计算模型的拟合误差来评估模型的性能。通常,随着多项式项的增加,模型的拟合误差会降低,但同时也可能过度拟合训练数据,并在新数据上表现较差。


因此,在使用多项式扩展时需要注意平衡模型的拟合能力和泛化能力,并使用正则化等技术来避免过度拟合。


2 多项式扩展的函数


在Python中,可以使用 Scikit-learn 库中的 PolynomialFeatures 类来进行多项式扩展。


PolynomialFeatures 类可以将原始特征矩阵 X 转换为包含多项式特征的新特征矩阵。在转换过程中,PolynomialFeatures 可以指定扩展的次数,也就是多项式的最高次数。例如,如果指定次数为 2,PolynomialFeatures 将原始特征矩阵 X 扩展为包含所有一次项、二次项和交叉项的新特征矩阵。


2.1 接收参数


PolynomialFeatures用于创建一个多项式扩展类,其接收参数为:


degree:指定多项式的最高次数。默认为 2。

interaction_only:布尔值,表示是否仅包含交叉项。如果将其设置为 True,则仅包含原始特征之间的交叉项,而不包括原始特征本身(比如x 2 x^{2}x 2 这种)。默认为 False。nclude_bias:布尔值,表示是否包含常数项。如果将其设置为 True,则在扩展特征矩阵中包含常数项,即所有元素都为 1 的一列。默认为 True。

创建类后,fit_transform 方法用于将原始特征矩阵 X 转换为多项式扩展后的新特征矩阵 X_poly。该函数的接收参数为原始数据,即:

X_poly = poly.fit_transform(X)
1

这里的fit_transform函数实际为fit函数+transform函数。当我们执行预测时,单独使用transform函数即可(见2.2中的例子)。

作为sklearn中的fit函数,该函数同样可以接收y,只不过y在被函数接收后不会进行任何计算。


ae663d807ba9ee3d51deef115a777fbc.png

2.2 多项式扩展示例


这里提供一个简单的二项式扩展的例子。

import numpy as np
from sklearn.preprocessing import PolynomialFeatures
# 创建一些虚拟数据
X = np.array([[1, 2], [3, 4], [5, 6]])
# 定义二次多项式扩展器
poly = PolynomialFeatures(degree=2)
# 进行二次多项式扩展
X_poly = poly.fit_transform(X)
# 打印扩展后的特征矩阵
print(X_poly)

代码中,我们首先创建了一个包含 3 个样本和 2 个特征的虚拟数据集 X。然后,我们创建了一个 PolynomialFeatures 对象,并将其次数设置为 2。接下来,我们使用 fit_transform 方法将 X 扩展为一个包含所有一次项、二次项和交叉项的新特征矩阵 X_poly。最后,我们打印出扩展后的特征矩阵 X_poly,结果如下:


7415a47cbb480c4ac908fe848ea7f202.png


3 多项式扩展的完整实例


此处以波士顿房价数据集为例。该数据集目前可以直接从sklearn.datasets数据集中导出。导出是会有未来版本警告,即未来的版本由于伦理问题会删除该数据集,目前大家直接忽视警告即可。

完整代码如下:

# 从Scikit-learn库中导入波士顿房价数据集  
from sklearn.datasets import load_boston  
# 导入所需的类和函数  
from sklearn.preprocessing import PolynomialFeatures  
from sklearn.linear_model import LinearRegression  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import mean_squared_error  
# 加载波士顿房价数据集  
boston = load_boston()  
# 提取特征和目标变量  
X = boston.data  # 特征矩阵  
y = boston.target  # 目标变量(房价)  
# 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=66)  
# 多项式扩展  
poly = PolynomialFeatures(degree=2)  # 创建一个2次多项式特征扩展器  
X_train_poly = poly.fit_transform(X_train)  # 对训练集进行多项式扩展  
X_test_poly = poly.transform(X_test)  # 对测试集进行多项式扩展  
# 拟合多项式回归模型  
model = LinearRegression()  # 创建一个线性回归模型  
model.fit(X_train_poly, y_train)  # 在扩展后的训练集上拟合线性回归模型  
# 在测试集上进行预测并计算MSE  
y_pred = model.predict(X_test_poly)  # 对扩展后的测试集进行预测  
mse = mean_squared_error(y_test, y_pred)  # 计算MSE  
# 打印MSE  
print(mse)


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
3月前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
661 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
16天前
|
机器学习/深度学习 人工智能 PyTorch
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
200行python代码实现从Bigram模型到LLM
|
16天前
|
机器学习/深度学习 算法 PyTorch
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
从零开始200行python代码实现LLM
|
1月前
|
数据采集 运维 API
把Postman调试脚本秒变Python采集代码的三大技巧
本文介绍了如何借助 Postman 调试工具快速生成 Python 爬虫代码,并结合爬虫代理实现高效数据采集。文章通过“跨界混搭”结构,先讲解 Postman 的 API 调试功能,再映射到 Python 爬虫技术,重点分享三大技巧:利用 Postman 生成请求骨架、通过 Session 管理 Cookie 和 User-Agent,以及集成代理 IP 提升稳定性。以票务信息采集为例,展示完整实现流程,探讨其在抗封锁、团队协作等方面的价值,帮助开发者快速构建生产级爬虫代码。
把Postman调试脚本秒变Python采集代码的三大技巧
|
25天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
64 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
27天前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
247 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
2月前
|
开发框架 Java .NET
Python中main函数:代码结构的基石
在Python中,`main`函数是程序结构化和模块化的重要组成部分。它实现了脚本执行与模块导入的分离,避免全局作用域污染并提升代码复用性。其核心作用包括:标准化程序入口、保障模块复用及支持测试驱动开发(TDD)。根据项目复杂度,`main`函数有基础版、函数封装版、参数解析版和类封装版四种典型写法。 与其他语言相比,Python的`main`机制更灵活,支持同一文件作为脚本运行或模块导入。进阶技巧涵盖多文件项目管理、命令行参数处理、环境变量配置及日志集成等。此外,还需注意常见错误如全局变量污染和循环导入,并通过延迟加载、多进程支持和类型提示优化性能。
214 0
|
3月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
1月前
|
数据采集 安全 BI
用Python编程基础提升工作效率
一、文件处理整明白了,少加两小时班 (敲暖气管子)领导让整理100个Excel表?手都干抽筋儿了?Python就跟铲雪车似的,哗哗给你整利索!
75 11
|
3月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
132 28

热门文章

最新文章

推荐镜像

更多