LeViT-UNet:transformer 编码器和CNN解码器的有效整合

简介: levi - unet[2]是一种新的医学图像分割架构,它使用transformer 作为编码器,这使得它能够更有效地学习远程依赖关系。levi - unet[2]比传统的U-Nets更快,同时仍然实现了最先进的分割性能。

levi - unet[2]在几个具有挑战性的医学图像分割基准上取得了比其他法更好的性能,包括Synapse多器官分割数据集(Synapse)和自动心脏诊断挑战数据集(ACDC)。

LeViT-UNet架构

levi - unet的编码器使用LeViT块构建,设计用于高效和有效地学习全局特征。解码器是使用卷积块构建的。

编码器从多个分辨率的输入图像中提取特征映射。这些特征映射被上采样,连接然后通过跳过连接传递到解码器。跳过连接允许解码器从编码器访问高分辨率的局部特征,有助于提高分割性能。

这种设计使模型能够综合transformer 和cnn的优点。transformer 刚擅长学习全局特征,而cnn擅长学习局部特征。通过结合这两种方法,levi - unet能够获得良好的分割性能,同时也相对高效。

LeViT编码器

编码器采用LeViT[1],主要由两个部分组成:卷积块和变压器块。卷积块通过对输入图像应用4层3x3卷积(步幅为2)来执行分辨率降低。在提取更多抽象特征的同时,这将图像的分辨率降低了一半。然后transformer块获取卷积块的特征映射并学习全局特征。

在编码器的最后阶段将来自卷积块和变压器块的特征连接起来。这使得编码器具有本地和全局特性。局部特征对于识别图像中的小而详细的物体很重要,而全局特征对于识别图像的整体结构很重要。通过结合局部和全局特征,编码器能够生成更准确的分割。

根据输入第一个transformer块的通道数量,开发了3个LeViT编码器:levi -128s, levi -192和levi -384。

CNN解码器

levi - unet的解码器将编码器的特征与跳过连接连接在一起。使得解码器能够从编码器访问高分辨率的局部特征,并采用级联上采样策略,利用cnn从前一层恢复分辨率。它由一系列上采样层组成,每个上采样层后面是两个3x3卷积层,一个BN和一个ReLU层。

实验结果

实现细节:数据增强(随机翻转和旋转),优化器(Adam,学习率1e-5,权重衰减1e-4),图像大小224x224,批大小8,epoch 350和400用于Synapse和ACDC数据集

LeViT模型优于现有模型,并且明显快于TransUNet,后者将Transformer块合并到CNN中。

上图显示了TransUNet、UNet、DeepLabv3+和levi -UNet四种不同方法的定性分割结果。其他三种方法更可能导致器官不足或者过度分割。例如,胃被TransUNet和DeepLabV3+分割不足(如上行第三个面板的红色箭头所示),被UNet过度分割(如第二行第四个面板的红色箭头所示)。

与其他方法相比,论文提出的模型输出相对平滑,表明在边界预测方面更具优势。

2篇论文:

[1] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Herv’e J’egou, Matthijs Douze, LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference, 2021

[2] Guoping Xu, Xingrong Wu, Xuan Zhang, Xinwei He, LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Segmentation, 2021

https://avoid.overfit.cn/post/474870d5912d4cb3aeade0b47c1a97e3

作者:Golnaz Hosseini

目录
相关文章
|
8月前
|
机器学习/深度学习 自然语言处理 异构计算
Python深度学习面试:CNN、RNN与Transformer详解
【4月更文挑战第16天】本文介绍了深度学习面试中关于CNN、RNN和Transformer的常见问题和易错点,并提供了Python代码示例。理解这三种模型的基本组成、工作原理及其在图像识别、文本处理等任务中的应用是评估技术实力的关键。注意点包括:模型结构的混淆、过拟合的防治、输入序列长度处理、并行化训练以及模型解释性。掌握这些知识和技巧,将有助于在面试中展现优秀的深度学习能力。
258 11
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
**RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
176 9
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
一文介绍CNN/RNN/GAN/Transformer等架构 !!
一文介绍CNN/RNN/GAN/Transformer等架构 !!
283 5
|
8月前
|
机器学习/深度学习 自然语言处理 并行计算
神经网络结构——CNN、RNN、LSTM、Transformer !!
神经网络结构——CNN、RNN、LSTM、Transformer !!
334 0
|
8月前
|
机器学习/深度学习 并行计算 算法
模型压缩部署神技 | CNN与Transformer通用,让ConvNeXt精度几乎无损,速度提升40%
模型压缩部署神技 | CNN与Transformer通用,让ConvNeXt精度几乎无损,速度提升40%
159 0
|
8月前
|
机器学习/深度学习 编解码 算法
助力目标检测涨点 | 可以这样把Vision Transformer知识蒸馏到CNN模型之中
助力目标检测涨点 | 可以这样把Vision Transformer知识蒸馏到CNN模型之中
275 0
|
8月前
|
机器学习/深度学习 编解码 测试技术
超强Trick | 如何设计一个比Transformer更强的CNN Backbone
超强Trick | 如何设计一个比Transformer更强的CNN Backbone
86 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
329 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
64 1

热门文章

最新文章

相关实验场景

更多