m基于matlab的无线自组网性能仿真,包括端到端时延,吞吐量,初入网时间,迟入网时间,网络建立时间

简介: m基于matlab的无线自组网性能仿真,包括端到端时延,吞吐量,初入网时间,迟入网时间,网络建立时间

1.算法仿真效果
matlab2022a仿真结果如下:

23b0e3730b13c405160e04b233e27383_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
cc10a47eb32cec4aaf6926adbbbb2123_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fa2e8e5ffafd5a096d13528f5f71ccf4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
45bc188b21dc1dfa10cdbe50578bea1f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
无线自组网(Wireless Ad Hoc Network,简称WANET)是一种无需基础设施支持的网络,它由一组移动的无线节点组成,这些节点可以自组织形成一个网络,实现数据的传输和共享。由于WANET是一种去中心化的网络,因此其性能受到节点移动、信道状态、路由算法等多种因素的影响。为了评估WANET的性能,需要进行性能仿真来模拟实际网络环境下的数据传输和节点行为。

    从端到端时延、吞吐量、初入网时间、迟入网时间和网络建立时间等方面详细介绍无线自组网性能仿真。

一、端到端时延

   端到端时延是指从源节点发送数据到目的节点接收到数据所需的总时间,包括数据传输时间、排队时间、传输时延、处理时延等。在WANET中,端到端时延受到多种因素的影响,如节点的移动速度、信道状态、路由算法等。

二、吞吐量

   吞吐量是指网络中单位时间内能够传输的数据量。在WANET中,节点的移动和信道状态的变化会影响网络的吞吐量。为了评估WANET的吞吐量性能,需要进行基于仿真的实验。常用的仿真工具包括NS-3、Omnet++等。在仿真中,需要设置合适的节点移动速度、信道参数、路由协议等参数,以模拟实际网络环境下节点的行为。通过收集仿真数据,可以计算出不同场景下的平均吞吐量、吞吐量分布等指标,评估WANET的性能。

   对于无线自组网而言,有一种常见的情况是由于信道状态变化或节点移动导致网络分割,从而降低网络吞吐量。因此,在仿真中需要考虑这种网络分割情况,以更全面地评估WANET的吞吐量性能。

三、初入网时间

  初入网时间是指一个节点加入WANET后,能够与其他节点正常通信的时间。在WANET中,节点加入网络需要进行网络发现、路由建立等多个步骤,这些步骤会影响节点初入网的时间。

四、迟入网时间

   迟入网时间是指一个节点在WANET中重新加入网络后,能够与其他节点正常通信的时间。在WANET中,节点重新加入网络需要进行网络发现、路由建立等多个步骤,这些步骤会影响节点迟入网的时间。

五、网络建立时间

    网络建立时间是指整个WANET从无到有建立起来所需的时间。在WANET中,网络建立需要进行节点发现、路由建立、网络拓扑构建等多个步骤,这些步骤会影响网络建立的时间。

    总之,无线自组网性能仿真是评估WANET性能的重要手段,通过端到端时延、吞吐量、初入网时间、迟入网时间和网络建立时间等指标的评估,可以帮助研究人员优化WANET的设计和性能,提高其应用效果。同时,需要注意在仿真中设置合适的场景和参数,以更准确地评估WANET性能。

3.MATLAB核心程序
``` N = 15;
tdrift= tclkTslotN;
%融合组网
%接收节点信息进行帧检测
%检测是否同步
flag = 0;
Tss = [];
Tee = [];
Delays = [];
ixk = 0;
while ixk<=length(paths)
ixk = ixk+1;
frame1D2= frame1D + randn(size(frame1D));
yy = xcorr(frame1D2(1:end-10000),PN1);
yy2 = yy;
pnx = find(yy2>100);
if isempty(pnx) == 0;
%建立动态时延关系表
for ij = 1:length(ttra2)
Delays(ij) = ttra3+ttra2(ij) + Tslot + tdrift;
end
%确定参考节点
IDrefS = idx1;
IDrefD = idx2;
%广播参考节点
TimeS = (ixk+2+0.2*rand);%发送点的时间,设置随机发送时间
%更新节点时间%完成更新
TimeD = TimeS + [sum(Delays)];
flag = 1;
else
%没检测到,不做处理
TimeS = 0;
TimeD = 0;
Delays= 0;
flag = 0;
end
Tss = [Tss,TimeS];
Tee = [Tee,TimeD];
end

    %端到端时延
    TimeD2D(jj)  = sum(Delays);
    %网络吞吐量与带宽,跳数相关
    th           = BW/Nhops;
    Throughput0(jj)= th/1e3;%转换为Kbits
    %初始入网时间
    Time1st(jj)  = mean(Tss);
    %迟入网时间
    TimeFst(jj)  = mean(Tee);
    %网络建立时间
    Timeset(jj)  = mean(Tee)+mean(Tss);
end
TimeD2D_(ii)    =mean(TimeD2D);
Throughput0_(ii)=mean(Throughput0);
Time1st_(ii)=mean(Time1st);
TimeFst_(ii)=mean(TimeFst);
Timeset_(ii)=mean(Timeset);

end

figure;
plot(Nnodes,TimeD2D_,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('节点数量');
ylabel('端到端时延(ms)');

figure;
plot(Nnodes,Throughput0_,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('节点数量');
ylabel('网络吞吐量(Kbps)');

figure;
plot(Nnodes,Time1st,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('节点数量');
ylabel('初始入网时间(s)');
ylim([0.8*min(Time1st
),1.2*max(Time1st_)]);

figure;
plot(Nnodes,TimeFst_,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('节点数量');
ylabel('迟入网时间(s)');

figure;
plot(Nnodes,Timeset_,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('节点数量');
ylabel('网络建立时间(s)');

```

相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
48 31
|
15天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
基于粒子滤波器的电池剩余使用寿命计算matlab仿真
本研究基于粒子滤波器预测电池剩余使用寿命(RUL),采用MATLAB2022a实现。通过非线性动力学模型模拟电池老化过程,利用粒子滤波器处理非线性和非高斯问题,准确估计电池SOH变化趋势,进而预测RUL。系统仿真结果显示了良好的预测性能。
|
2天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
1天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
11天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
12天前
|
算法
超市火灾烟雾蔓延及人员疏散的matlab模拟仿真,带GUI界面
本项目基于MATLAB2022A开发,模拟了大型商业建筑中火灾发生后的人员疏散与烟雾扩散情况。算法通过设定引导点指导人员疏散,考虑视野范围、随机运动及多细胞竞争同一格点的情况。人员疏散时,根据是否处于烟雾区调整运动策略和速度,初始疏散采用正态分布启动。烟雾扩散模型基于流体方程,考虑了无风环境下的简化。
|
9天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
9天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
14天前
|
存储 算法 数据安全/隐私保护
基于方块编码的图像压缩matlab仿真,带GUI界面
本项目展示了基于方块编码的图像压缩算法,包括算法运行效果、软件环境(Matlab 2022a)、核心程序及理论概述。算法通过将图像划分为固定大小的方块并进行量化、编码,实现高效压缩,适用于存储和传输大体积图像数据。
下一篇
DataWorks