🌺237. 删除链表中的节点
🍁题目描述
请编写一个函数,用于 删除单链表中某个特定节点 。在设计函数时需要注意,你无法访问链表的头节点 head ,只能直接访问 要被删除的节点 。
题目数据保证需要删除的节点 不是末尾节点 。
示例 1:
输入:head = [4,5,1,9], node = 5
输出:[4,1,9]
解释:指定链表中值为 5 的第二个节点,那么在调用了你的函数之后,该链表应变为 4 -> 1 -> 9
示例 2:
输入:head = [4,5,1,9], node = 1
输出:[4,5,9]
解释:指定链表中值为 1 的第三个节点,那么在调用了你的函数之后,该链表应变为 4 -> 5 -> 9
提示:
链表中节点的数目范围是 [2, 1000]
-1000 <= Node.val <= 1000
链表中每个节点的值都是 唯一 的
需要删除的节点 node 是 链表中的节点 ,且 不是末尾节点
🍁基础框架
C++ 版本给出的基础框架代码如下:
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */ class Solution { public: void deleteNode(ListNode* node) { } };
🍁详细思路
🍀思路一
由于不能访问给定的要删除的结点前一结点,不能采用常见的删除方法。
根据题目提示,要删除的结点不是末尾结点,我们可以对删除结点的下一结点进行操作。
将删除结点后面一个点的值交换到删除节点
将删除节点指向删除节点后面一个点的后面一个点。
💬 代码演示
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */ class Solution { public: void deleteNode(ListNode* node) { node->val = node->next->val; node->next = node->next->next; } };
🌺876. 链表的中间结点
🍁题目描述
给定一个头结点为 head 的非空单链表,返回链表的中间结点。
如果有两个中间结点,则返回第二个中间结点。
示例 1:
输入:[1,2,3,4,5]
输出:此列表中的结点 3 (序列化形式:[3,4,5])
返回的结点值为 3 。 (测评系统对该结点序列化表述是 [3,4,5])。
注意,我们返回了一个 ListNode 类型的对象 ans,这样:
ans.val = 3, ans.next.val = 4, ans.next.next.val = 5, 以及 ans.next.next.next = NULL.
示例 2:
输入:[1,2,3,4,5,6]
输出:此列表中的结点 4 (序列化形式:[4,5,6])
由于该列表有两个中间结点,值分别为 3 和 4,我们返回第二个结点。
提示:
给定链表的结点数介于 1 和 100 之间。
🍁基础框架
C++ 版本给出的基础框架代码如下:
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { public: ListNode* middleNode(ListNode* head) { } };
🍁详细思路
🍀思路一【数组】
遍历链表,将链表内元素存入数组。若数组长度为 A ,则中间结点为 A/2
💬 代码演示
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { public: ListNode* middleNode(ListNode* head) { vector<ListNode*> A = {head}; while (A.back()->next != NULL) A.push_back(A.back()->next); return A[A.size() / 2]; } };
🍀思路二【快慢指针】
使用快慢指针,快指针一次走两步,满指针一次走一步。当快指针移动到链表的末尾时,慢指针恰好到链表的中间。
💬 代码演示
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { public: ListNode* middleNode(ListNode* head) { ListNode* slow = head; ListNode* fast = head; while (fast != NULL && fast->next != NULL) { slow = slow->next; fast = fast->next->next; } return slow; } };
🌺剑指 Offer 24. 反转链表
🍁题目描述
定义一个函数,输入一个链表的头节点,反转该链表并输出反转后链表的头节点。
示例:
输入: 1->2->3->4->5->NULL
输出: 5->4->3->2->1->NULL
限制:
0 <= 节点个数 <= 5000
🍁基础框架
C++ 版本给出的基础框架代码如下:
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */ class Solution { public: ListNode* reverseList(ListNode* head) { } };
🍁详细思路
🍀思路一【迭代】
翻转链表只需要把每一个指针的指向反过来就行了,我们定义两个指针,一个指向前一结点,另一个指向当前结点,然后进行反向操作即可。
💬 代码演示
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { public: ListNode* reverseList(ListNode* head) { ListNode* prev = nullptr; ListNode* curr = head; while (curr) { ListNode* next = curr->next; curr->next = prev; prev = curr; curr = next; } return prev; } };
🍀思路二【递归】
递归三部曲
递归结束条件,
找到函数的等价关系式
调用函数
(1)当头结点或第二个结点为空的时候,返回头结点
(2)在返回的过程中,让当前结点的下一个结点的next指向当前结点,当前结点的next指向NULL,实现局部翻转。
(3)调用函数
💬 代码演示
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { public: ListNode* reverseList(ListNode* head) { if (!head || !head->next) { return head; } ListNode* newHead = reverseList(head->next); head->next->next = head; head->next = nullptr; return newHead; } };