Java性能优化的50个细节,我必须分享给你!(一)

简介: 整理了网上的各种资料,汇总了Java性能优化的50个细节,觉得很不错,供初学者学习掌握。

大家好,趁着周末,结合网上资料整理了java的常见问题。

在JAVA程序中,性能问题的大部分原因并不在于JAVA语言,而是程序本身。养成良好的编码习惯非常重要,能够显著地提升程序性能。

1. 尽量在合适的场合使用单例

使用单例可以减轻加载的负担,缩短加载的时间,提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面:

  • 第一,控制资源的使用,通过线程同步来控制资源的并发访问;
  • 第二,控制实例的产生,以达到节约资源的目的;
  • 第三,控制数据共享,在不建立直接关联的条件下,让多个不相关的进程或线程之间实现通信。

2. 尽量避免随意使用静态变量

当某个对象被定义为static变量所引用,那么GC通常是不会回收这个对象所占有的内存,如

public class A{
   
private static B b = new B();
}

此时静态变量b的生命周期与A类同步,如果A类不会卸载,那么b对象会常驻内存,直到程序终止。

3. 尽量避免过多过常地创建Java对象

尽量避免在经常调用的方法,循环中new对象,由于系统不仅要花费时间来创建对象,而且还要花时间对这些对象进行垃圾回收和处理,在我们可以控制的范围内,最大限度地重用对象,最好能用基本的数据类型或数组来替代对象。

4. 尽量使用final修饰符

带有final修饰符的类是不可派生的。在JAVA核心API中,有许多应用final的例子,例如java、lang、String,为String类指定final防止了使用者覆盖length()方法。另外,如果一个类是final的,则该类所有方法都是final的。java编译器会寻找机会内联(inline)所有的final方法(这和具体的编译器实现有关),此举能够使性能平均提高50%。

如:让访问实例内变量的getter/setter方法变成”final:

简单的getter/setter方法应该被置成final,这会告诉编译器,这个方法不会被重载,所以,可以变成”inlined”,例子:

class MAF {
   
public void setSize (int size) {
   
_size = size;
}
private int _size;
}
更正
class DAF_fixed {
   
final public void setSize (int size) {
   
_size = size;
}
private int _size;
}

5. 尽量使用局部变量

调用方法时传递的参数以及在调用中创建的临时变量都保存在栈(Stack)中,速度较快;其他变量,如静态变量、实例变量等,都在堆(Heap)中创建,速度较慢。

6. 尽量处理好包装类型和基本类型两者的使用场所

虽然包装类型和基本类型在使用过程中是可以相互转换,但它们两者所产生的内存区域是完全不同的,基本类型数据产生和处理都在栈中处理,包装类型是对象,是在堆中产生实例。在集合类对象,有对象方面需要的处理适用包装类型,其他的处理提倡使用基本类型。

7. 慎用synchronized,尽量减小synchronize的方法

都知道,实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。synchronize方法被调用时,直接会把当前对象锁了,在方法执行完之前其他线程无法调用当前对象的其他方法。所以,synchronize的方法尽量减小,并且应尽量使用方法同步代替代码块同步。

9. 尽量不要使用finalize方法

实际上,将资源清理放在finalize方法中完成是非常不好的选择,由于GC的工作量很大,尤其是回收Young代内存时,大都会引起应用程序暂停,所以再选择使用finalize方法进行资源清理,会导致GC负担更大,程序运行效率更差。

10. 尽量使用基本数据类型代替对象

String str = "hello";

上面这种方式会创建一个“hello”字符串,而且JVM的字符缓存池还会缓存这个字符串;

String str = new String("hello");

此时程序除创建字符串外,str所引用的String对象底层还包含一个char[]数组,这个char[]数组依次存放了h,e,l,l,o

11. 多线程在未发生线程安全前提下应尽量使用HashMap、ArrayList

HashTable、Vector等使用了同步机制,降低了性能。

12. 尽量合理的创建HashMap

当你要创建一个比较大的hashMap时,充分利用这个构造函数

public HashMap(int initialCapacity, float loadFactor);

避免HashMap多次进行了hash重构,扩容是一件很耗费性能的事,在默认中initialCapacity只有16,而loadFactor是 0.75,需要多大的容量,你最好能准确的估计你所需要的最佳大小,同样的Hashtable,Vectors也是一样的道理。

13. 尽量减少对变量的重复计算

如:

for(int i=0;i<list.size();i++)

应该改为:

for(int i=0,len=list.size();i<len;i++)

并且在循环中应该避免使用复杂的表达式,在循环中,循环条件会被反复计算,如果不使用复杂表达式,而使循环条件值不变的话,程序将会运行的更快。

14. 尽量避免不必要的创建

如:

A a = new A();
if(i==1){
   
list.add(a);
}

应该改为:

if(i==1){
   
A a = new A();
list.add(a);
}

15. 尽量在finally块中释放资源

程序中使用到的资源应当被释放,以避免资源泄漏,这最好在finally块中去做。不管程序执行的结果如何,finally块总是会执行的,以确保资源的正确关闭。

16. 尽量使用移位来代替'a/b'的操作

"/"是一个代价很高的操作,使用移位的操作将会更快和更有效

如:

int num = a / 4;
int num = a / 8;

应该改为:

int num = a >> 2;
int num = a >> 3;

但注意的是使用移位应添加注释,因为移位操作不直观,比较难理解。

17.尽量使用移位来代替'a*b'的操作

同样的,对于'*'操作,使用移位的操作将会更快和更有效

如:

int num = a * 4;
int num = a * 8;

应该改为:

int num = a << 2;
int num = a << 3;

18. 尽量确定StringBuffer的容量

StringBuffer 的构造器会创建一个默认大小(通常是16)的字符数组。在使用中,如果超出这个大小,就会重新分配内存,创建一个更大的数组,并将原先的数组复制过来,再丢弃旧的数组。在大多数情况下,你可以在创建 StringBuffer的时候指定大小,这样就避免了在容量不够的时候自动增长,以提高性能。

如:

StringBuffer buffer = new StringBuffer(1000);

19. 尽量早释放无用对象的引用

大部分时,方法局部引用变量所引用的对象会随着方法结束而变成垃圾,因此,大部分时候程序无需将局部,引用变量显式设为null。

例如:

Public void test(){
   
Object obj = new Object();
……
Obj=null;
}

上面这个就没必要了,随着方法test()的执行完成,程序中obj引用变量的作用域就结束了。但是如果是改成下面:

Public void test(){
   
Object obj = new Object();
……
Obj=null;
//执行耗时,耗内存操作;或调用耗时,耗内存的方法
……
}

这时候就有必要将obj赋值为null,可以尽早的释放对Object对象的引用。

20. 尽量避免使用二维数组

二维数据占用的内存空间比一维数组多得多,大概10倍以上。

目录
相关文章
|
1月前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
56 0
|
2月前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
27天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
35 6
|
1月前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
1月前
|
存储 Java
Java 11 的String是如何优化存储的?
本文介绍了Java中字符串存储优化的原理和实现。通过判断字符串是否全为拉丁字符,使用`byte`代替`char`存储,以节省空间。具体实现涉及`compress`和`toBytes`方法,前者用于尝试压缩字符串,后者则按常规方式存储。代码示例展示了如何根据配置决定使用哪种存储方式。
|
1月前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
1月前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
72 5
|
1月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
2月前
|
存储 缓存 安全
Java 集合框架优化:从基础到高级应用
《Java集合框架优化:从基础到高级应用》深入解析Java集合框架的核心原理与优化技巧,涵盖列表、集合、映射等常用数据结构,结合实际案例,指导开发者高效使用和优化Java集合。
56 4
|
2月前
|
监控 算法 Java
Java虚拟机垃圾回收机制深度剖析与优化策略####
【10月更文挑战第21天】 本文旨在深入探讨Java虚拟机(JVM)中的垃圾回收机制,揭示其工作原理、常见算法及参数调优技巧。通过案例分析,展示如何根据应用特性调整GC策略,以提升Java应用的性能和稳定性,为开发者提供实战中的优化指南。 ####
49 5