类GPT模型训练提速26.5%,清华朱军等人用INT4算法加速神经网络训练

本文涉及的产品
文本翻译,文本翻译 100万字符
文档翻译,文档翻译 1千页
语种识别,语种识别 100万字符
简介: 类GPT模型训练提速26.5%,清华朱军等人用INT4算法加速神经网络训练


我们知道,将激活、权重和梯度量化为 4-bit 对于加速神经网络训练非常有价值。但现有的 4-bit 训练方法需要自定义数字格式,而当代硬件不支持这些格式。在本文中,清华朱军等人提出了一种使用 INT4 算法实现所有矩阵乘法的 Transformer 训练方法。

模型训练得快不快,这与激活值、权重、梯度等因素的要求紧密相关。


神经网络训练需要一定计算量,使用低精度算法(全量化训练或 FQT 训练)有望提升计算和内存的效率。FQT 在原始的全精度计算图中增加了量化器和去量化器,并将昂贵的浮点运算替换为廉价的低精度浮点运算。


对 FQT 的研究旨在降低训练数值精度,同时降低收敛速度和精度的牺牲。所需数值精度从 FP16 降到 FP8、INT32+INT8 和 INT8+INT5。FP8 训练通过有 Transformer 引擎的 Nvidia H100 GPU 完成,这使大规模 Transformer 训练实现了惊人的加速。


最近训练数值精度已被压低到 4 位( 4 bits)。Sun 等人成功训练了几个具有 INT4 激活 / 权重和 FP4 梯度的当代网络;Chmiel 等人提出自定义的 4 位对数数字格式,进一步提高了精度。然而,这些 4 位训练方法不能直接用于加速,因为它们需要自定义数字格式,这在当代硬件上是不支持的。


在 4 位这样极低的水平上训练存在着巨大的优化挑战,首先前向传播的不可微分量化器会使损失函数图不平整,其中基于梯度的优化器很容易卡在局部最优。其次梯度在低精度下只能近似计算,这种不精确的梯度会减慢训练过程,甚至导致训练不稳定或发散的情况出现。


本文为流行的神经网络 Transformer 提出了新的 INT4 训练算法。训练 Transformer 所用的成本巨大的线性运算都可以写成矩阵乘法(MM)的形式。MM 形式使研究人员能够设计更加灵活的量化器。这种量化器通过 Transformer 中的特定的激活、权重和梯度结构,更好地近似了 FP32 矩阵乘法。本文中的量化器还利用了随机数值线性代数领域的新进展。



论文地址:https://arxiv.org/pdf/2306.11987.pdf


研究表明,对前向传播而言,精度下降的主要原因是激活中的异常值。为了抑制该异常值,研究提出了 Hadamard 量化器,用它对变换后的激活矩阵进行量化。该变换是一个分块对角的 Hadamard 矩阵,它将异常值所携带的信息扩散到异常值附近的矩阵项上,从而缩小了异常值的数值范围。


对反向传播而言,研究利用了激活梯度的结构稀疏性。研究表明,一些 token 的梯度非常大,但同时,其余大多数的 token 梯度又非常小,甚至比较大梯度的量化残差更小。因此,与其计算这些小梯度,不如将计算资源用于计算较大梯度的残差。


结合前向和反向传播的量化技术,本文提出一种算法,即对 Transformer 中的所有线性运算使用 INT4 MMs。研究评估了在各种任务上训练 Transformer 的算法,包括自然语言理解、问答、机器翻译和图像分类。与现有的 4 位训练工作相比,研究所提出的算法实现了相媲美或更高的精度。此外,该算法与当代硬件 (如 GPU) 是兼容的,因为它不需要自定义数字格式 (如 FP4 或对数格式)。并且研究提出的原型量化 + INT4 MM 算子比 FP16 MM 基线快了 2.2 倍,将训练速度提高了 35.1%。


前向传播


在训练过程中,研究者利用 INT4 算法加速所有的线性算子,并将所有计算强度较低的非线性算子设置为 FP16 格式。Transformer 中的所有线性算子都可以写成矩阵乘法形式。为了便于演示,他们考虑了如下简单的矩阵乘法加速。



这种矩阵乘法的最主要用例是全连接层。


学得的步长量化


加速训练必须使用整数运算来计算前向传播。因此,研究者利用了学得的步长量化器(LSQ)。作为一种静态量化方法,LSQ 的量化规模不依赖于输入,因此比动态量化方法成本更低。相较之下,动态量化方法需要在每次迭代时动态地计算量化规模。


给定一个 FP 矩阵 X,LSQ 通过如下公式 (2) 将 X 量化为整数。



激活异常值


简单地将 LSQ 应用到具有 4-bit 激活 / 权重的 FQT(fully quantized training,全量化训练)中,会由于激活异常值而导致准确度下降。如下图 1 (a) 所示,激活的有一些异常值项,其数量级比其他项大得多。


在这种情况下,步长 s_X 在量化粒度和可表示数值范围之间进行权衡。如果 s_X 很大,则可以很好地表示异常值,同时代价是以粗略的方式表示其他大多数项。如果 s_X 很小,则必须截断 [−Q_Ns_X, Q_Ps_X] 范围之外的项。



Hadamard 量化


研究者提出使用 Hadamard 量化器(HQ)来解决异常值问题,它的主要思路是在另一个异常值较少的线性空间中量化矩阵。


激活矩阵中的异常值可以形成特征级结构。这些异常值通常集中在几个维度上,也就是 X 中只有几列显著大于其他列。作为一种线性变换,Hadamard 变换可以将异常值分摊到其他项中。具体地,Hadamard 变换 H_k 是一个 2^k × 2^k 矩阵。



为了抑制异常值,研究者对 X 和 W 的变换版本进行量化。



通过结合量化后的矩阵,研究者得到如下。



其中逆变换彼此之间相互抵消,并且 MM 可以实现如下。



反向传播


研究者使用 INT4 运算来加速线性层的反向传播。公式 (3) 中定义的线性算子 HQ-MM 具有四个输入,分别是激活 X、权重 W 以及步长 s_X 和 s_W。给定关于损失函数 L 的输出梯度∇_YL,他们需要计算这四个输入的梯度。


梯度的结构稀疏性


研究者注意到,训练过程中梯度矩阵∇_Y 往往非常稀疏。稀疏性结构是这样的:∇_Y 的少数行(即 tokens)具有较大的项,而大多数其他行接近全零向量。他们在下图 2 中绘制了所有行的 per-row 范数∥(∇_Y)_i:∥的直方图。


Bit 拆分和平均分数采样


研究者讨论了如何设计梯度量化器,从而利用结构稀疏性在反向传播期间准确计算 MM。高级的思路是,很多行的梯度非常的小,因而对参数梯度的影响也很小,但却浪费了大量计算。此外,大行无法用 INT4 准确地表示。


为利用这种稀疏性,研究者提出 bit 拆分,将每个 token 的梯度拆分为更高的 4bits 和更低的 4bits。然后再通过平均分数采样选择信息量最大的梯度,这是 RandNLA 的一种重要性采样技术。


实验结果


研究在各种任务中评估了 INT4 训练算法,包括语言模型微调、机器翻译和图像分类。研究使用了 CUDA 和 cutlass2 实现了所提出的 HQ-MM 和 LSS-MM 算法。除了简单地使用 LSQ 作为嵌入层外,研究用 INT4 替换了所有浮点线性运算符,并保持最后一层分类器的全精度。并且,在此过程中,研究人员对所有评估模型采用默认架构、优化器、调度器和超参数。


收敛模型精度。下表 1 展示了收敛模型在各任务上的精度。



语言模型微调。与 LSQ+LUQ 相比,研究提出的算法在 bert-base 模型上提升了 5.5% 的平均精度、,在 bert-large 模型上提升了 25% 的平均精度。


研究团队还展示了算法在 SQUAD、SQUAD 2.0、Adversarial QA、CoNLL-2003 和 SWAG 数据集上进一步展示了结果。在所有任务上,与 LSQ+LUQ 相比,该方法取得了更好的性能。与 LSQ+LUQ 相比,该方法在 SQUAD 和 SQUAD 2.0 上分别提高了 1.8% 和 3.6%。在更困难的对抗性 QA 中,该方法的 F1 分数提高了 6.8%。在 SWAG 和 CoNLL-2003 上,该方法分别提高了 6.7%、4.2% 的精度。


机器翻译。研究还将所提出的方法用于预训练。该方法在 WMT 14 En-De 数据集上训练了一个基于 Transformer 的 [51] 模型用于机器翻译。


HQ+LSS 的 BLEU 降解率约为 1.0%,小于 Ultra-low 的 2.1%,高于 LUQ 论文中报道的 0.3%。尽管如此,HQ+LSS 在这项预训练任务上的表现仍然与现有方法相当,并且它支持当代硬件。


图像分类。研究在 ImageNet21k 上加载预训练的 ViT 检查点,并在 CIFAR-10、CIFAR-100 和 ImageNet1k 上对其进行微调。


与 LSQ+LUQ 相比,研究方法将 ViT-B/32 和 ViT-L/32 的准确率分别提高了 1.1% 和 0.2%。在 ImageNet1k 上,该方法与 LSQ+LUQ 相比,ViT-B/32 的精度提高了 2%,ViT-L/32 的精度提高了 2.6%,ViT-L/32 的精度提高了 0.2%。


研究团队进一步测试了算法在 ImageNet1K 上预训练 DeiT-Small 模型的有效性,其中 HQ+LSS 与 LSQ+LUQ 相比仍然可以收敛到相似的精度水平,同时对硬件更加友好。


消融研究


研究者进行消融研究,以独立地在挑战性 CoLA 数据集上展示前向和反向方法的有效性。为了研究不同量化器对前向传播的有效性,他们将反向传播设置为 FP16。结果如下图 3 (a) 所示。


对于反向传播,研究者比较了简单的极小极大量化器、LUQ 和他们自己的 LSS,并将前向传播设置为 FP16。结果如下图 3 (b) 所示,虽然位宽高于 2,但 LSS 取得的结果与 LUQ 相当,甚至略高于后者。



计算和内存效率


研究者比较自己提出的 HQ-MM (HQ)、计算权重梯度的 LSS(LSSWeight)、计算激活梯度的 LSS(LSSAct)的吞吐量、它们的平均吞吐量(INT4)及下图 4 中英伟达 RTX 3090 GPU 上 cutlass 提供的基线张量核心 FP16 GEMM 实现(FP16),它的峰值吞吐量为 142 FP16 TFLOPs 和 568 INT4 TFLOPs。



研究者还比较 FP16 PyTorch AMP 以及自己 INT4 训练算法在 8 个英伟达 A100 GPU 上训练类 BERT 和类 GPT 语言模型的训练吞吐量。他们改变了隐藏层大小、中间全连接层大小和批大小,并在下图 5 中绘制了 INT4 训练的加速比。


结果显示,INT4 训练算法对于类 BERT 模型实现了最高 35.1% 的加速,对于类 GPT 模型实现了最高 26.5% 的加速。



更多技术和实验细节请参阅原论文。

相关文章
|
19天前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
33 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
3天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
12 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
21天前
|
机器学习/深度学习 数据采集 算法
如何在一夜之间成为模型微调大师?——从零开始的深度学习修炼之旅,让你的算法功力飙升!
【10月更文挑战第5天】在机器学习领域,预训练模型具有强大的泛化能力,但直接使用可能效果不佳,尤其在特定任务上。此时,模型微调显得尤为重要。本文通过图像分类任务,详细介绍如何利用PyTorch对ResNet-50模型进行微调,包括环境搭建、数据预处理、模型加载与训练等步骤,并提供完整Python代码。通过调整超参数和采用早停策略等技巧,可进一步优化模型性能。适合初学者快速上手模型微调。
76 8
|
15天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
19天前
|
机器学习/深度学习 算法 搜索推荐
django调用矩阵分解推荐算法模型做推荐系统
django调用矩阵分解推荐算法模型做推荐系统
16 4
|
16天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
38 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
18天前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
29 2
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。