SpringBoot进阶:4招优雅实现SpringBoot异步线程间数据传递

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
云原生网关 MSE Higress,422元/月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: Spring Boot 自定义线程池实现异步开发相信看过陈某的文章都了解,但是在实际开发中需要在父子线程之间传递一些数据,比如用户信息,链路信息等等比如用户登录信息使用ThreadLocal存放保证线程隔离,代码如下:

Spring Boot 自定义线程池实现异步开发相信看过陈某的文章都了解,但是在实际开发中需要在父子线程之间传递一些数据,比如用户信息,链路信息等等

比如用户登录信息使用ThreadLocal存放保证线程隔离,代码如下:

/**
 * @author 公众号:码猿技术专栏
 * @description 用户上下文信息
 */
public class OauthContext {
    private static  final  ThreadLocal<LoginVal> loginValThreadLocal=new ThreadLocal<>();
    public static  LoginVal get(){
        return loginValThreadLocal.get();
    }
    public static void set(LoginVal loginVal){
        loginValThreadLocal.set(loginVal);
    }
    public static void clear(){
        loginValThreadLocal.remove();
    }
}

那么子线程想要获取这个LoginVal如何做呢?

今天就来介绍几种优雅的方式实现Spring Boot 内部的父子线程的数据传递。

1. 手动设置

每执行一次异步线程都要分为两步:

  1. 获取父线程的LoginVal
  2. 将LoginVal设置到子线程,达到复用

代码如下:

public void handlerAsync() {
        //1. 获取父线程的loginVal
        LoginVal loginVal = OauthContext.get();
        log.info("父线程的值:{}",OauthContext.get());
        CompletableFuture.runAsync(()->{
            //2. 设置子线程的值,复用
           OauthContext.set(loginVal);
           log.info("子线程的值:{}",OauthContext.get());
        });
    }

虽然能够实现目的,但是每次开异步线程都需要手动设置,重复代码太多,看了头疼,你认为优雅吗?

2. 线程池设置TaskDecorator

TaskDecorator是什么?官方api的大致意思:这是一个执行回调方法的装饰器,主要应用于传递上下文,或者提供任务的监控/统计信息。

知道有这么一个东西,如何去使用?

TaskDecorator是一个接口,首先需要去实现它,代码如下:

/**
 * @author 公众号:码猿技术专栏
 * @description 上下文装饰器
 */
public class ContextTaskDecorator implements TaskDecorator {
    @Override
    public Runnable decorate(Runnable runnable) {
        //获取父线程的loginVal
        LoginVal loginVal = OauthContext.get();
        return () -> {
            try {
                // 将主线程的请求信息,设置到子线程中
                OauthContext.set(loginVal);
                // 执行子线程,这一步不要忘了
                runnable.run();
            } finally {
                // 线程结束,清空这些信息,否则可能造成内存泄漏
                OauthContext.clear();
            }
        };
    }
}

这里我只是设置了LoginVal,实际开发中其他的共享数据,比如SecurityContextRequestAttributes....

TaskDecorator需要结合线程池使用,实际开发中异步线程建议使用线程池,只需要在对应的线程池配置一下,代码如下:

@Bean("taskExecutor")
public ThreadPoolTaskExecutor taskExecutor() {
        ThreadPoolTaskExecutor poolTaskExecutor = new ThreadPoolTaskExecutor();
        poolTaskExecutor.setCorePoolSize(xx);
        poolTaskExecutor.setMaxPoolSize(xx);
        // 设置线程活跃时间(秒)
        poolTaskExecutor.setKeepAliveSeconds(xx);
        // 设置队列容量
        poolTaskExecutor.setQueueCapacity(xx);
        //设置TaskDecorator,用于解决父子线程间的数据复用
        poolTaskExecutor.setTaskDecorator(new ContextTaskDecorator());
        poolTaskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
        // 等待所有任务结束后再关闭线程池
        poolTaskExecutor.setWaitForTasksToCompleteOnShutdown(true);
        return poolTaskExecutor;
    }

此时业务代码就不需要去设置子线程的值,直接使用即可,代码如下:

public void handlerAsync() {
        log.info("父线程的用户信息:{}", OauthContext.get());
        //执行异步任务,需要指定的线程池
        CompletableFuture.runAsync(()-> log.info("子线程的用户信息:{}", OauthContext.get()),taskExecutor);
    }

来看一下结果,如下图:

这里使用的是CompletableFuture执行异步任务,使用@Async这个注解同样是可行的。

注意:无论使用何种方式,都需要指定线程池

3. InheritableThreadLocal

这种方案不建议使用,InheritableThreadLocal虽然能够实现父子线程间的复用,但是在线程池中使用会存在复用的问题,这种方案使用也是非常简单,直接用InheritableThreadLocal替换ThreadLocal即可,代码如下:

/**
 * @author 公众号:码猿技术专栏
 * @description 用户上下文信息
 */
public class OauthContext {
    private static  final  InheritableThreadLocal<LoginVal> loginValThreadLocal=new InheritableThreadLocal<>();
    public static  LoginVal get(){
        return loginValThreadLocal.get();
    }
    public static void set(LoginVal loginVal){
        loginValThreadLocal.set(loginVal);
    }
    public static void clear(){
        loginValThreadLocal.remove();
    }
}

4. TransmittableThreadLocal

TransmittableThreadLocal是阿里开源的工具,弥补了InheritableThreadLocal的缺陷,在使用线程池等会池化复用线程的执行组件情况下,提供ThreadLocal值的传递功能,解决异步执行时上下文传递的问题。

使用起来也是非常简单,添加依赖如下:

<dependency>
 <groupId>com.alibaba</groupId>
 <artifactId>transmittable-thread-local</artifactId>
 <version>2.14.2</version>
</dependency>

OauthContext改造代码如下:

/**
 * @author 公众号:码猿技术专栏
 * @description 用户上下文信息
 */
public class OauthContext {
    private static  final TransmittableThreadLocal<LoginVal> loginValThreadLocal=new TransmittableThreadLocal<>();
    public static  LoginVal get(){
        return loginValThreadLocal.get();
    }
    public static void set(LoginVal loginVal){
        loginValThreadLocal.set(loginVal);
    }
    public static void clear(){
        loginValThreadLocal.remove();
    }
}

关于TransmittableThreadLocal想深入了解其原理可以看陈某之前的文章:微服务中使用阿里开源的TTL,优雅的实现身份信息的线程间复用,应用还是非常广泛的

TransmittableThreadLocal原理

从定义来看,TransimittableThreadLocal继承于InheritableThreadLocal,并实现TtlCopier接口,它里面只有一个copy方法。所以主要是对InheritableThreadLocal的扩展。

public class TransmittableThreadLocal<T> extends InheritableThreadLocal<T> implements TtlCopier<T>

TransimittableThreadLocal中添加holder属性。这个属性的作用就是被标记为具备线程传递资格的对象都会被添加到这个对象中。

要标记一个类,比较容易想到的方式,就是给这个类新增一个Type字段,还有一个方法就是将具备这种类型的的对象都添加到一个静态全局集合中。之后使用时,这个集合里的所有值都具备这个标记。

// 1. holder本身是一个InheritableThreadLocal对象
// 2. 这个holder对象的value是WeakHashMap<TransmittableThreadLocal<Object>, ?>
//   2.1 WeekHashMap的value总是null,且不可能被使用。
//    2.2 WeekHasshMap支持value=null
private static InheritableThreadLocal<WeakHashMap<TransmittableThreadLocal<Object>, ?>> holder = new InheritableThreadLocal<WeakHashMap<TransmittableThreadLocal<Object>, ?>>() {
  @Override
  protected WeakHashMap<TransmittableThreadLocal<Object>, ?> initialValue() {
    return new WeakHashMap<TransmittableThreadLocal<Object>, Object>();
  }
  /**
   * 重写了childValue方法,实现上直接将父线程的属性作为子线程的本地变量对象。
   */
  @Override
  protected WeakHashMap<TransmittableThreadLocal<Object>, ?> childValue(WeakHashMap<TransmittableThreadLocal<Object>, ?> parentValue) {
    return new WeakHashMap<TransmittableThreadLocal<Object>, Object>(parentValue);
  }
};

应用代码是通过TtlExecutors工具类对线程池对象进行包装。工具类只是简单的判断,输入的线程池是否已经被包装过、非空校验等,然后返回包装类ExecutorServiceTtlWrapper。根据不同的线程池类型,有不同和的包装类。

@Nullable
public static ExecutorService getTtlExecutorService(@Nullable ExecutorService executorService) {
  if (TtlAgent.isTtlAgentLoaded() || executorService == null || executorService instanceof TtlEnhanced) {
    return executorService;
  }
  return new ExecutorServiceTtlWrapper(executorService);
}

进入包装类ExecutorServiceTtlWrapper。可以注意到不论是通过ExecutorServiceTtlWrapper#submit方法或者是ExecutorTtlWrapper#execute方法,都会将线程对象包装成TtlCallable或者TtlRunnable,用于在真正执行run方法前做一些业务逻辑。

/**
 * 在ExecutorServiceTtlWrapper实现submit方法
 */
@NonNull
@Override
public <T> Future<T> submit(@NonNull Callable<T> task) {
  return executorService.submit(TtlCallable.get(task));
}
/**
 * 在ExecutorTtlWrapper实现execute方法
 */
@Override
public void execute(@NonNull Runnable command) {
  executor.execute(TtlRunnable.get(command));
}

所以,重点的核心逻辑应该是在TtlCallable#call()或者TtlRunnable#run()中。以下以TtlCallable为例,TtlRunnable同理类似。在分析call()方法之前,先看一个类Transmitter

public static class Transmitter {
  /**
    * 捕获当前线程中的是所有TransimittableThreadLocal和注册ThreadLocal的值。
    */
  @NonNull
  public static Object capture() {
    return new Snapshot(captureTtlValues(), captureThreadLocalValues());
  }
    /**
    * 捕获TransimittableThreadLocal的值,将holder中的所有值都添加到HashMap后返回。
    */
  private static HashMap<TransmittableThreadLocal<Object>, Object> captureTtlValues() {
    HashMap<TransmittableThreadLocal<Object>, Object> ttl2Value = 
      new HashMap<TransmittableThreadLocal<Object>, Object>();
    for (TransmittableThreadLocal<Object> threadLocal : holder.get().keySet()) {
      ttl2Value.put(threadLocal, threadLocal.copyValue());
    }
    return ttl2Value;
  }
  /**
    * 捕获注册的ThreadLocal的值,也就是原本线程中的ThreadLocal,可以注册到TTL中,在
    * 进行线程池本地变量传递时也会被传递。
    */
  private static HashMap<ThreadLocal<Object>, Object> captureThreadLocalValues() {
    final HashMap<ThreadLocal<Object>, Object> threadLocal2Value = 
      new HashMap<ThreadLocal<Object>, Object>();
    for(Map.Entry<ThreadLocal<Object>,TtlCopier<Object>>entry:threadLocalHolder.entrySet()){
      final ThreadLocal<Object> threadLocal = entry.getKey();
      final TtlCopier<Object> copier = entry.getValue();
      threadLocal2Value.put(threadLocal, copier.copy(threadLocal.get()));
    }
    return threadLocal2Value;
  }
  /**
    * 将捕获到的本地变量进行替换子线程的本地变量,并且返回子线程现有的本地变量副本backup。
    * 用于在执行run/call方法之后,将本地变量副本恢复。
    */
  @NonNull
  public static Object replay(@NonNull Object captured) {
    final Snapshot capturedSnapshot = (Snapshot) captured;
    return new Snapshot(replayTtlValues(capturedSnapshot.ttl2Value), 
                        replayThreadLocalValues(capturedSnapshot.threadLocal2Value));
  }
  /**
    * 替换TransmittableThreadLocal
    */
  @NonNull
  private static HashMap<TransmittableThreadLocal<Object>, Object> replayTtlValues(@NonNull HashMap<TransmittableThreadLocal<Object>, Object> captured) {
    // 创建副本backup
    HashMap<TransmittableThreadLocal<Object>, Object> backup = 
      new HashMap<TransmittableThreadLocal<Object>, Object>();
    for (final Iterator<TransmittableThreadLocal<Object>> iterator = holder.get().keySet().iterator(); iterator.hasNext(); ) {
      TransmittableThreadLocal<Object> threadLocal = iterator.next();
      // 对当前线程的本地变量进行副本拷贝
      backup.put(threadLocal, threadLocal.get());
      // 若出现调用线程中不存在某个线程变量,而线程池中线程有,则删除线程池中对应的本地变量
      if (!captured.containsKey(threadLocal)) {
        iterator.remove();
        threadLocal.superRemove();
      }
    }
    // 将捕获的TTL值打入线程池获取到的线程TTL中。
    setTtlValuesTo(captured);
    // 是一个扩展点,调用TTL的beforeExecute方法。默认实现为空
    doExecuteCallback(true);
    return backup;
  }
  private static HashMap<ThreadLocal<Object>, Object> replayThreadLocalValues(@NonNull HashMap<ThreadLocal<Object>, Object> captured) {
    final HashMap<ThreadLocal<Object>, Object> backup = 
      new HashMap<ThreadLocal<Object>, Object>();
    for (Map.Entry<ThreadLocal<Object>, Object> entry : captured.entrySet()) {
      final ThreadLocal<Object> threadLocal = entry.getKey();
      backup.put(threadLocal, threadLocal.get());
      final Object value = entry.getValue();
      if (value == threadLocalClearMark) threadLocal.remove();
      else threadLocal.set(value);
    }
    return backup;
  }
  /**
    * 清除单线线程的所有TTL和TL,并返回清除之气的backup
    */
  @NonNull
  public static Object clear() {
    final HashMap<TransmittableThreadLocal<Object>, Object> ttl2Value = 
      new HashMap<TransmittableThreadLocal<Object>, Object>();
    final HashMap<ThreadLocal<Object>, Object> threadLocal2Value = 
      new HashMap<ThreadLocal<Object>, Object>();
    for(Map.Entry<ThreadLocal<Object>,TtlCopier<Object>>entry:threadLocalHolder.entrySet()){
      final ThreadLocal<Object> threadLocal = entry.getKey();
      threadLocal2Value.put(threadLocal, threadLocalClearMark);
    }
    return replay(new Snapshot(ttl2Value, threadLocal2Value));
  }
  /**
    * 还原
    */
  public static void restore(@NonNull Object backup) {
    final Snapshot backupSnapshot = (Snapshot) backup;
    restoreTtlValues(backupSnapshot.ttl2Value);
    restoreThreadLocalValues(backupSnapshot.threadLocal2Value);
  }
  private static void restoreTtlValues(@NonNull HashMap<TransmittableThreadLocal<Object>, Object> backup) {
    // 扩展点,调用TTL的afterExecute
    doExecuteCallback(false);
    for (final Iterator<TransmittableThreadLocal<Object>> iterator = holder.get().keySet().iterator(); iterator.hasNext(); ) {
      TransmittableThreadLocal<Object> threadLocal = iterator.next();
      if (!backup.containsKey(threadLocal)) {
        iterator.remove();
        threadLocal.superRemove();
      }
    }
    // 将本地变量恢复成备份版本
    setTtlValuesTo(backup);
  }
  private static void setTtlValuesTo(@NonNull HashMap<TransmittableThreadLocal<Object>, Object> ttlValues) {
    for (Map.Entry<TransmittableThreadLocal<Object>, Object> entry : ttlValues.entrySet()) {
      TransmittableThreadLocal<Object> threadLocal = entry.getKey();
      threadLocal.set(entry.getValue());
    }
  }
  private static void restoreThreadLocalValues(@NonNull HashMap<ThreadLocal<Object>, Object> backup) {
    for (Map.Entry<ThreadLocal<Object>, Object> entry : backup.entrySet()) {
      final ThreadLocal<Object> threadLocal = entry.getKey();
      threadLocal.set(entry.getValue());
    }
  }
  /**
   * 快照类,保存TTL和TL
   */
  private static class Snapshot {
    final HashMap<TransmittableThreadLocal<Object>, Object> ttl2Value;
    final HashMap<ThreadLocal<Object>, Object> threadLocal2Value;
    private Snapshot(HashMap<TransmittableThreadLocal<Object>, Object> ttl2Value,
                     HashMap<ThreadLocal<Object>, Object> threadLocal2Value) {
      this.ttl2Value = ttl2Value;
      this.threadLocal2Value = threadLocal2Value;
    }
  }

进入TtlCallable#call()方法。

@Override
public V call() throws Exception {
  Object captured = capturedRef.get();
  if (captured == null || releaseTtlValueReferenceAfterCall && 
      !capturedRef.compareAndSet(captured, null)) {
    throw new IllegalStateException("TTL value reference is released after call!");
  }
  // 调用replay方法将捕获到的当前线程的本地变量,传递给线程池线程的本地变量,
  // 并且获取到线程池线程覆盖之前的本地变量副本。
  Object backup = replay(captured);
  try {
    // 线程方法调用
    return callable.call();
  } finally {
    // 使用副本进行恢复。
    restore(backup);
  }
}

到这基本上线程池方式传递本地变量的核心代码已经大概看完了。总的来说在创建TtlCallable对象是,调用capture()方法捕获调用方的本地线程变量,在call()执行时,将捕获到的线程变量,替换到线程池所对应获取到的线程的本地变量中,并且在执行完成之后,将其本地变量恢复到调用之前。

总结

上述列举了4种方案,陈某这里推荐方案2和方案4,其中两种方案的缺点非常明显,实际开发中也是采用的方案2或者方案4

本文就是愿天堂没有BUG给大家分享的内容,大家有收获的话可以分享下,想学习更多的话可以到微信公众号里找我,我等你哦。

相关文章
|
3月前
|
JSON Java 数据格式
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——封装统一返回的数据结构
本文介绍了在Spring Boot中封装统一返回的数据结构的方法。通过定义一个泛型类`JsonResult&lt;T&gt;`,包含数据、状态码和提示信息三个属性,满足不同场景下的JSON返回需求。例如,无数据返回时可设置默认状态码&quot;0&quot;和消息&quot;操作成功!&quot;,有数据返回时也可自定义状态码和消息。同时,文章展示了如何在Controller中使用该结构,通过具体示例(如用户信息、列表和Map)说明其灵活性与便捷性。最后总结了Spring Boot中JSON数据返回的配置与实际项目中的应用技巧。
195 0
|
3月前
|
JSON Java fastjson
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——使用 fastJson 处理 null
本文介绍如何使用 fastJson 处理 null 值。与 Jackson 不同,fastJson 需要通过继承 `WebMvcConfigurationSupport` 类并覆盖 `configureMessageConverters` 方法来配置 null 值的处理方式。例如,可将 String 类型的 null 转为 &quot;&quot;,Number 类型的 null 转为 0,避免循环引用等。代码示例展示了具体实现步骤,包括引入相关依赖、设置序列化特性及解决中文乱码问题。
88 0
|
3月前
|
JSON Java fastjson
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——Spring Boot 默认对Json的处理
本文介绍了在Spring Boot中返回Json数据的方法及数据封装技巧。通过使用`@RestController`注解,可以轻松实现接口返回Json格式的数据,默认使用的Json解析框架是Jackson。文章详细讲解了如何处理不同数据类型(如类对象、List、Map)的Json转换,并提供了自定义配置以应对null值问题。此外,还对比了Jackson与阿里巴巴FastJson的特点,以及如何在项目中引入和配置FastJson,解决null值转换和中文乱码等问题。
249 0
|
5月前
|
前端开发 Java API
SpringBoot整合Flowable【06】- 查询历史数据
本文介绍了Flowable工作流引擎中历史数据的查询与管理。首先回顾了流程变量的应用场景及其局限性,引出表单在灵活定制流程中的重要性。接着详细讲解了如何通过Flowable的历史服务API查询用户的历史绩效数据,包括启动流程、执行任务和查询历史记录的具体步骤,并展示了如何将查询结果封装为更易理解的对象返回。最后总结了Flowable提供的丰富API及其灵活性,为后续学习驳回功能做了铺垫。
263 0
SpringBoot整合Flowable【06】- 查询历史数据
|
3月前
|
前端开发 Cloud Native Java
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
|
4月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
1007 43
|
4月前
|
缓存 安全 Java
面试中的难题:线程异步执行后如何共享数据?
本文通过一个面试故事,详细讲解了Java中线程内部开启异步操作后如何安全地共享数据。介绍了异步操作的基本概念及常见实现方式(如CompletableFuture、ExecutorService),并重点探讨了volatile关键字、CountDownLatch和CompletableFuture等工具在线程间数据共享中的应用,帮助读者理解线程安全和内存可见性问题。通过这些方法,可以有效解决多线程环境下的数据共享挑战,提升编程效率和代码健壮性。
168 6
|
1月前
|
机器学习/深度学习 消息中间件 存储
【高薪程序员必看】万字长文拆解Java并发编程!(9-2):并发工具-线程池
🌟 ​大家好,我是摘星!​ 🌟今天为大家带来的是并发编程中的强力并发工具-线程池,废话不多说让我们直接开始。
79 0
|
4月前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
通过本文,您可以了解如何在业务线程中注册和处理Linux信号。正确处理信号可以提高程序的健壮性和稳定性。希望这些内容能帮助您更好地理解和应用Linux信号处理机制。
91 26
|
4月前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
本文详细介绍了如何在Linux中通过在业务线程中注册和处理信号。我们讨论了信号的基本概念,并通过完整的代码示例展示了在业务线程中注册和处理信号的方法。通过正确地使用信号处理机制,可以提高程序的健壮性和响应能力。希望本文能帮助您更好地理解和应用Linux信号处理,提高开发效率和代码质量。
97 17