过去三个月,LLaMA系模型发展如何?指令微调的核心问题又是什么?

简介: 过去三个月,LLaMA系模型发展如何?指令微调的核心问题又是什么?


作者:符尧

符尧(yao.fu@ed.ac.uk),爱丁堡大学 (University of Edinburgh) 博士生,本科毕业于北京大学。


ChatGPT 大火之后,在 2023 年 2 月 24 日,LLaMA 的出现让 instruction tuning 这个方向变得火热;3 月 18 日,Alpaca 让大家看到从成熟的模型 distill 小模型成为还不错的 ChatBot 的可能性,从而引发羊驼系模型寒武纪大爆发。但仅仅过去三个月,大家开始发现意识到用 ChatGPT 的数据训练 LLaMA 的各种问题。本文回顾在过去三个月内的 LLaMA 系模型的发展,讨论 Instruction Tuning 的下一步挑战。


Disclaimer: 这篇文章算是一个 quick research memo,是从我近期的一个分享大纲里 edit 出来的,做了一些删减和补充;现阶段开源社区对于 LLM 训练清楚 / 不清楚的地方同时存在,我尽量做到引用 / 讨论的内容都是有切实证据,而不是基于流言。很多的内容是我跟对应论文的原作者直接讨论过的。但即便这样,我的 take 也可能有误,很多也讨论不出来,所以请大家直接在评论区 comment,积极参与讨论,真理越辩越明。


目录



1 - 起源


最开始三篇


  • InstructGPT: Training language models to follow instructions with human feedback
  • FLANv1: Finetuned Language Models Are Zero-Shot Learners
  • T0: Multitask Prompted Training Enables Zero-Shot Task Generalization


对比


  • InstructGPT 的目标是对齐,zero-shot /cross lingual 是副产物
  • 这篇文章用的 7B 的 Reward model 来对应 175B 的 Policy model,然后被 DeepSpeed Chat 以及之后一系列 RL 的开源工作 follow,这种做法应该是错的。
  • 正确的做法应该是用 Reward model scale up 换取 policy model 减小,见 [Scaling Laws for Reward Model Overoptimization](https://arxiv.org/abs/2210.10760) — 也就是说把两个模型大小换过来,用 175B 的 reward 去 PPO 7B 的 policy
  • 模型上线现阶段 10-50B 是一个比较跑得起的量级,再大太贵了
  • FLANv1 和 T0 的目标是 zero-shot,所以不对齐

然后是 Self-instruct


  • Self-Instruct: Aligning Language Models with Self-Generated Instructions


注意 self-instruct 的重点


  • Base model 可以是任意,不需要是经过了 alignment 之后的模型 (ChatGPT)
  • 复现了从初代 davinci 到 text-davinci-001 的过程 — 非常 insightful!!



然后是 FLANv2 — 很重要,我可能读了十遍以上,建议背诵全文


  • Scaling Instruction-Finetuned Language Models
  • 效果除了不加 human preference 之外其他都加,等下专门讨论
  • Human preference 确实是喜欢能说的,但是能说的模型不一定能干活。Flan 能干活,但是不能说,跟程序员一样


2 - LLaMA 出现之后


  • Alpaca:起始文章,但是模型本身强度并不多高
  • Vicuna
  • 在开源中只做对话强度不错,格式符合人类喜好,生成内容多,unique token 多
  • Automatic eval 中,可能 in-context learning /reasoning/knowledge suboptimal (体现在 MMLU,BBH 分数),不是说它不行,而是说它可以更好
  • GPT-4 eval 到底行不行还不好说,LMSys 团队自己说行,前提是 prompt engineering 做得足够到位:Judging LLM-as-a-judge with MT-Bench and Chatbot Arena
  • 另外 LMSys 的团队在 efficiency 方面非常强,模型的 serve 看 [vllm](https://github.com/vllm-project/vllm) 这个 project,或许是开源最快的
  • 然后一系列以 GPT-4 做 judge 然后号称自己达到了 GPT3.5 x% 水准的模型,全部不推荐,因为 Eval 不可靠
  • 但是存在几篇工作在 alignment 的时候没有依赖 ChatGPT,这些工作推荐,它们包括
  • LIMA: Less Is More for Alignment — 关注他们选数据的方法,推荐花一个小时的时间把他们的 [数据](https://huggingface.co/datasets/GAIR/lima) 有感情地朗读一遍,这样就知道什么样的 SFT 的数据是好数据了
  • Dromedary: Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision — 关注他们 prompt engineering 的方法,这个基本上是一个 LLaMA 版的 Constitutional AI - SFT
  • 然后是一些 paper (终于) 开始分析 instruction tuning 的 data mixture
  • Tulu: How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources
  • 结果非常 mix,没办法下结论哪种 mixture 好
  • 但是知道哪种不好:NLP benchmark


3 - Eval 怎么做


首先,不要在一堆 benchmark 上算分数看平均,特别是不要在 GPT-3 的测试任务上看平均,因为平均下来大家都一样;推荐只看核心的有区分度的 benchmark


没有区分度的例子:


  • LM-Eval-Harnesshttps://github.com/EleutherAI/lm-evaluation-harness) ,benchmark 太多,平均下来掩盖优质 benchmark
  • 这里面其实涵盖了 MMLU 和 MATH,但是被其他数据集平均了
  • Summarization + Rouge / Translation + BLEU:
  • Rouge 和 BLEU 模型强弱只有四五分的差别,数字太小 v.s. accuracy 下模型强弱是 90 分和 10 分的差别,数字足够大
  • Rouge 和 BLEU 和人类偏好不 align — 注意 BLEU 也不完全 align

那么 Pretrain 建议看哪些呢?


  • 区分度,模型强弱需要能一眼看出
  • 分方向,现阶段可以暂时分成
  • 英文知识 — MMLU
  • 中文知识 — C-Eval
  • 推理 — GSM8k / BBH
  • 代码 — HumanEval / MBPP
  • 解决上面四项平衡之后,可以接着做
  • MATH:高难度 reasoning
  • Dialog:这个可能只有 human eval 才行,automatic eval 搞不定


接下来讲 Automatic Eval


Automatic Eval - 适合 pretrained checkpoint - 基本上可以看  https://github.com/FranxYao/chain-of-thought-hub 的做法


  • Knowledge: MMLU
  • 这个数据集很稳定,基本上没有 sensitivity issue
  • Reasoning:
  • GSM8k: 也比较稳定,但要注意答案提取函数的提出率,低于九十的话得多加 regular expression
  • BBH - Algorithmic:
  • 不是很稳定,需要注意答案提出率
  • BBH - Language:
  • 不是很稳定,需要注意答案提出率 — Chain-of-thought Hub 马上会出一个答案提出率对于结果的 sensitivity 的分析,结论是 BBH 比较 sensitive
  • 现在除了增大模型之外,还不清楚哪些操作可以增加 BBH 数据集上的分数
  • Coding:
  • Human Eval / MBPP: 似乎比较稳定但需要注意做 unbiased estimation
  • 先看上面的几个数据集,分数能够 match llama 之后,就看 MATH
  • MATH
  • 超级难,GPT-4 的分数
  • naive prompting: 42
  • → complexity based prompting: 50 https://openreview.net/forum?id=yf1icZHC-l9
  • → progressive hint prompting: 53 https://arxiv.org/abs/2304.09797
  • → majority voting over 18k: 69.6
  • → best of n with outcome based reward modeling: 72.4
  • → best of n with [process-based reward modeling](https://arxiv.org/abs/2305.20050): 78.2
  • → PPO + process-based reward modeling = ? 推测会上 90
  • 泛化?— 应该是比较强的,泛化一般而言跟基础模型大小正相关,跟 SFT 数据总量负相关,跟 SFT 数据丰富度正相关
  • 如果不是 GPT-4
  • Minerva / PaLM-2: 34.3
  • Galactica: 33.6 — 这篇文章操作很好,因为 Hallucination 被喷下架导致重要性被严重低估
  • 88B paper + 7B code + 7B encyclopedias, textbooks and educational material + 2B KB + 1B CC + 0.4B prompt /instruction * 4 epochs
  • LLaMA 65B: 10.6
  • 其他:低于 10 分


对于一个已经 finetune 成了 chatbot 的模型


  • 首先把上述 benchmark 用 few-shot 的方式过一遍,确保不要掉点
  • 如果只是 dialog finetuning 的话可能会伤已有的能力 (MMLU / BBH)
  • 如果掉点,则考虑 LM mixing / FLANv2 mixing
  • 注意 Chatbot 的 few-shot prompting 要用 dialog 的版本因为 single round 里塞很多 in-context example 模型可能不 instruction-following 不够强,见 CoT Hub 的 standard prompt library(https://github.com/FranxYao/chain-of-thought-hub/blob/main/spl/gsm8k/chat/few_shot_cot.chatml


  • 然后就是去 eval 用户偏好了,这个时候只能人做
  • 如果有很大的,已经训练好了的 reward model,可以用它 eval 上线的小型 / 中等模型,这个其实跟人做 eval 区别不大
  • 对于一个很大的 Policy Model
  • Online iterative RLHF 前期怎样都需要需要 expert eval
  • 后期需要 expert eval [with AI assistance](https://arxiv.org/abs/2206.05802)


那么能不能用稍微弱一点的模型做 eval 呢?— 可以用,但是注意 query 的难度和分布,注意 prompt engineering


  • 如果不经过 prompt engineering ,肯定不行,因为各种 bias
  • 如果 query 难度不够,diversity 不够,也不一定行
  • 如果 query 难度足够 + 经过了疯狂 prompt engineering,则对于 information seeking 类型的 eval ,或许可以,see https://arxiv.org/abs/2306.05685
  • 但是对于 reasoning 相关,non-information seeking 相关(比如 TLDR),又不一定行
  • 对于 information seeking 相关的 query 会 biased 到长的回复


回复越长,GPT-4 越喜欢,分越高


4 - FLANv2 的效果,Long-Context


FLANv2 是一个很神奇的数据集,它除了不加 user preference 之外什么都加



  • 注意 CoT prompting
  • 只在 62B 之后才会比 Direct 更好
  • 不加 knowledge (MMLU) 只加 reasoning (BBH)
  • FLANv2 增加的效果有
  • knowledge (MMLU)
  • reasoning (BBH)
  • Multilingual (TyDiQA / MGSM)
  • 注意 FLAN 的作者们验证过,没有数据泄露
  • 注意以上内容对 in-context learning 和 zero-shot 均成立
  • 但是 FLAN 的回复短,所以不加 user preference — Flan 的性格就像直男,能干活儿,话太少


注意区分数据泄漏和分布内泛化


  • 如果一个数据集的测试集被用来训练模型,叫做数据泄漏,此时模型的分数会特别高,不可信
  • 如果一个数据集的训练集被用来训练模型,叫做分布内泛化,此时模型的分数是可信的
  • 有些数据集分布内泛化的难度不高,比如 MMLU / C-Eval,基本上做 data scaling 就可以加分
  • 有些数据集,如果模型不强,即使看过了训练集,模型在测试集上也做不好,比如 GSM8K — 这种类型的数据集是优质 eval 数据集
  • 代码的难度可能介于 MMLU 和 GSM8k 之间,分布内泛化不像 GSM8K 那么难,但也不简单


然后根据最近Zero-Scrolls 上的数据(https://www.zero.scrolls-benchmark.com/leaderboard),FLAN 还可以加 Long-context Reasoning ,不知道为什么



注意这里 FlanT5 和 T0pp 只有 instruction 的数据集有区别,但是 FlanT5 仅靠 T5 的 relative positional encoding 来 naively scale 到 8k 的 context length 会显著高于 T0


Long Context 或许 data engineering 跟 neural architecture engineering 同样重要


5 - 代码


两篇文章的 data engineering 非常出色


  • WizardCoder: Empowering Code Large Language Models with Evol-Instruct
  • 通过不断 prompt AlpacaCoder 构造 instruction tuning 数据集,基于wizardlm的方法,使用了 chatgpt 来生成复杂指令和对应的回答
  • HumanEval,DS-1000 仅次于 GPT-4,超过 Claude / Bard
  • base model 用的是 StarCoder,这意味着 The Stack V3 的质量再次得到验证,同时注意 pretrain code data 可以过多个 epoch 但网页只过一个 epoch
  • Phi-1: Textbooks Are All You Need
  • Pretrain 数据集来源于 filtered code + prompt ChatGPT
  • Instruction tuning 的数据集来自于 prompt ChatGPT
  • base model 只有 1B


怎么评价


  • 一定要好好研究他们是如何 prompt base model 的 — 要对 base model 有信心,只要 MMLU / BBH / HumanEval 分高,它的潜力就超过你的想象
  • prompt 出来的数据集相当于给 HumanEval / MBPP 这种比较短的算法题搞了一个超大训练集
  • 但是不可以认为它对着测试集优化,因为它泛化的空间应该大于 HumanEval / MBPP — 这个泛化空间跟 model scale 显著正相关
  • 在此基础上,比较难的点是
  • Repo-level code understanding /completion — HumanEval / MBPP 还是有点短
  • Ability balance — 如果照着 Phi-1 的做法,除了代码之外的其他能力都会被冲掉


另外关于代码和文本的 data mixture: https://arxiv.org/abs/2305.16264


Continue training 时使用 50% 的代码作为 data mixture 不会伤模型 language 的能力,反而会提升 coding 和 reasoning


6 - Putting them together: 能力平衡


目标:


  • 构造一个 instruction tuning data mixture,使得 dialog /coding 增加
  • 同时 MMLU (English knowledge) / C-Eval (Chinese knowledge) / BBH and GSM8K (reasoning) 不掉点
  • In-context learning 不掉点


思路


  • 可以用 FLAN 打底 — 它非常大几乎相当于 continue training
    考虑做一个中文版的 FLAN — 最近智源发的COIG-PC(https://huggingface.co/datasets/BAAI/COIG-PC) 似乎有点像
  • code 的部分参照 WizardCoder 和 Phi-1 的做法
  • 以上数据做好之后,搜 instruction tuning 的 data mixture and data curriculum 的超参数
  • 用上面提到的方法做 Eval


7 - 总结


  • 现阶段 instruction tuning 核心问题是能力平衡
  • 基础能力的 Eval 可以参照 Chain-of-thought Hub,但 dialog 还是得人来,且人也不一定 eval 得足够好
  • FLAN 非常神奇,可以考虑做一个中文版
  • 抓紧把 instruction tuning 收尾,快点进到 reward modeling 阶段
  • 注意要先把 reward modeling 本身做好,确保 reward model 有判断力,再去做 PPO
  • 不要 reward model 还没搞清楚就上 PPO ,步子迈太大容易扯到


原文链接:https://yaofu.notion.site/6dafe3f8d11445ca9dc8a2ca1c5b199

相关文章
|
8月前
|
数据采集 自然语言处理 文字识别
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(下)
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(下)
652 0
|
8月前
|
机器学习/深度学习 数据采集 人工智能
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(上)
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(上)
954 0
|
2月前
|
数据采集 文字识别 测试技术
智源研究院发布千万级多模态指令数据集Infinity-MM:驱动开源模型迈向SOTA性能
近年来,视觉语言模型(VLM)取得了显著进展,然而,现有的开源数据和指令数据集在数量和质量上依然落后,基于开源数据训练的模型在效果上仍然远落后于 SOTA 闭源模型或使用专有数据训练的开源模型。为解决以上问题,进一步提升开源模型的性能,2024年10月25日,智源研究院发布并开源了千万级多模态指令数据集Infinity-MM。
|
5月前
|
人工智能 自然语言处理
公理训练让LLM学会因果推理:6700万参数模型比肩万亿参数级GPT-4
【8月更文挑战第3天】新论文提出“公理训练”法,使仅有6700万参数的语言模型掌握因果推理,性能媲美万亿级GPT-4。研究通过大量合成数据示例教授模型因果公理,实现有效推理并泛化至复杂图结构。尽管面临合成数据需求大及复杂关系处理限制,此法仍为语言模型的因果理解开辟新途径。[链接: https://arxiv.org/pdf/2407.07612]
87 1
|
3月前
|
人工智能 语音技术 UED
仅用4块GPU、不到3天训练出开源版GPT-4o,这是国内团队最新研究
【10月更文挑战第19天】中国科学院计算技术研究所提出了一种名为LLaMA-Omni的新型模型架构,实现与大型语言模型(LLMs)的低延迟、高质量语音交互。该模型集成了预训练的语音编码器、语音适配器、LLM和流式语音解码器,能够在不进行语音转录的情况下直接生成文本和语音响应,显著提升了用户体验。实验结果显示,LLaMA-Omni的响应延迟低至226ms,具有创新性和实用性。
82 1
|
5月前
长上下文能力只是吹牛?最强GPT-4o正确率仅55.8%,开源模型不如瞎蒙
【8月更文挑战第10天】新研究NoCha挑战显示,即使是顶级的大型语言模型GPT-4o,在处理长篇幅文本时正确率仅55.8%,低于人类直观水平。该挑战基于近作英文小说,检验模型对整本书信息的理解与推理能力。结果显示,模型在全局推理上的表现不佳,倾向于依赖局部信息而非整体上下文,尤其是在复杂推理需求高的科幻小说上表现更弱。这一发现揭示了当前模型在处理长上下文任务上的局限性。论文链接: [https://arxiv.org/pdf/2406.16264](https://arxiv.org/pdf/2406.16264)。
134 65
|
4月前
|
数据可视化 Swift
小钢炮进化,MiniCPM 3.0 开源!4B参数超GPT3.5性能,无限长文本,超强RAG三件套!模型推理、微调实战来啦!
旗舰端侧模型面壁「小钢炮」系列进化为全新 MiniCPM 3.0 基座模型,再次以小博大,以 4B 参数,带来超越 GPT-3.5 的性能。并且,量化后仅 2GB 内存,端侧友好。
小钢炮进化,MiniCPM 3.0 开源!4B参数超GPT3.5性能,无限长文本,超强RAG三件套!模型推理、微调实战来啦!
|
5月前
|
数据采集 人工智能 自然语言处理
Llama 3.1发布:4050亿参数模型,迄今为止最强的开源大模型之一
Meta宣布发布Llama 3.1 405B,这一目前公开的最大且最先进的语言模型,标志着开源语言模型新时代的到来。Llama 3.1 405B不仅在常识理解、数学、工具使用及多语言翻译等功能上媲美顶尖AI模型,其8B和70B版本亦支持多种语言,拥有长达128K的上下文理解能力。该模型在150多个多语言基准测试中表现出色,并经过广泛的人工评估。为克服大规模训练挑战,Meta采用标准解码器架构和迭代后训练策略,大幅提升了数据质量和模型性能。此外,Llama 3.1通过监督微调、拒绝采样和直接偏好优化等手段提高了模型对指令的响应性和安全性。
97 2
|
7月前
|
数据采集 机器学习/深度学习 人工智能
可信度超越GPT-4V,清华&面壁揭秘小钢炮模型背后的高效对齐技术
【6月更文挑战第15天】清华大学与面壁智能合作的RLAIF-V框架挑战GPT-4V,通过开源AI反馈增强大语言模型的可信度。该框架利用开放数据和在线学习优化对齐,减少幻觉错误,12B参数模型表现超越GPT-4V。虽有数据质量和稳定性问题,但展示出开源MLLMs潜力。[链接: https://arxiv.org/abs/2405.17220]
135 1
|
7月前
|
机器学习/深度学习 语音技术
多模态大模型不够灵活,谷歌DeepMind创新架构Zipper:分开训练再压缩
【6月更文挑战第12天】谷歌DeepMind的Zipper架构解决了多模态大模型灵活性问题,通过分解为单模态模型并用“压缩”过程组合,实现多模态生成。该方法允许独立训练每个模态,提升灵活性和可扩展性,适用于数据有限或领域特定的模态。Zipper利用交叉注意力机制融合模态输出,适用于图像描述、语音识别等任务。尽管需要更多计算资源且性能受限于单模态模型质量,但已在ASR和TTS领域展现潜力。论文链接:https://arxiv.org/pdf/2405.18669
72 3