近十年首次,国内机构上海AI Lab、武大、商汤研究获CVPR 2023最佳论文(2)

简介: 近十年首次,国内机构上海AI Lab、武大、商汤研究获CVPR 2023最佳论文

论文介绍:三维点云配准 (PCR) 是计算机视觉中的一个基本问题,目的是寻找点云对对齐的最优姿态。

该研究提出了一种基于最大团(maximal cliques,MAC)的 3D 配准方法。关键创新是放宽了对先前最大团的约束,并在图中挖掘更多的局部一致性信息,以生成准确的位姿假设。

研究者在对 U3M、3DMatch、3DLoMatch 和 KITTI 进行了大量的实验后证明,MAC 有效地提高了配准的准确性,优于各种最先进的方法,并提升了深度学习(deep-learned)方法的性能。MAC 与深度学习方法的结合在 3DMatch 和 3DLoMatch 上实现了 95.7% / 78.9% 的配准召回率,达到了最先进的水平。

1)构建兼容性图以呈现初始对应关系之间的关联关系。

在一个低重叠的点云对上,最大团( maximal )和最大限度(maximum)团之间的比较


MAC 在技术上非常简单,Pipeline 如图所示。


最佳论文提名

最佳论文提名颁给了谷歌和康奈尔大学的《DynIBaR: Neural Dynamic Image-Based Rendering》。


论文介绍:本文解决了从描述复杂动态场景的单目视频中合成新视图的问题。

此前,基于时间变化的神经辐射场(也称为动态 NeRF)在这个任务上表现较好。然而,对于具有复杂物体运动和不受控制的相机轨迹的长视频来说,这些方法会产生模糊或不准确的渲染结果。

该研究提出了一种新方法,通过采用基于图像体素的渲染框架,以一种场景运动感知的方式从附近的视角中聚合特征来合成新的视角。在动态场景数据集上,DynIBaR 比现有方法取得了显著的改进。

不同方法之间的比较效果:


最佳学生论文提名

今年的最佳学生论文提名颁给了谷歌和波士顿大学的 Dreambooth。该技术在 AI 画图领域里已经很有名气,户只需提供 3~5 个样本加一句话,AI 算法就能定制照片级图像。


论文介绍:来自谷歌和波士顿大学的研究者提出了一种「个性化」的文本到图像扩散模型 DreamBooth,能够适应用户特定的图像生成需求。

该研究的目标是扩展模型的语言 - 视觉字典,使其将新词汇与用户想要生成的特定主题绑定。一旦新字典嵌入到模型中,它就可以使用这些词来合成特定主题的新颖逼真的图像,同时在不同的场景中进行情境化,保留关键识别特征,效果如下图 1 所示。

其他奖项

除了论文奖之外,大会还颁布了 PAMITC 奖,其中包括三个重要奖项,即往年设立的 Longuet-Higgins 奖、青年研究者奖,以及在 CVPR 2020 设立的 Thomas S. Huang 纪念奖。

时间检验奖

Longuet-Higgins 奖是 IEEE 计算机协会模式分析与机器智能(PAMI)技术委员会在每年的 CVPR 颁发的「计算机视觉基础贡献奖」,表彰十年前对计算机视觉研究产生了重大影响的 CVPR 论文。该奖项以理论化学家和认知科学家 H. Christopher Longuet-Higgins 命名。

今年的获奖论文是 2013 年的研究《Online Object Tracking: A Benchmark》。

论文链接:https://ieeexplore.ieee.org/document/6619156

青年研究员奖

青年研究者奖(Young Researcher Awards)旨在表彰年轻的科学家,鼓励他们继续做出开创性的工作。评选标准是获奖者获得博士学位的年限少于 7 年。

今年获得该奖项的研究者是 Christoph Feichtenhofer 和 Judy Hoffman。

Thomas Huang 纪念奖

为了纪念 Thomas S. Huang(黄煦涛)教授,PAMITC 奖励委员会批准设立 Thomas S. Huang 纪念奖,以表彰在 CV 研究、教育和服务方面被公认为楷模的研究人员。该奖项从 2021 年开始颁发。获奖者需要拿到博士学位至少 7 年,最好处于职业发展中期(不超过 25 年)。

今年的获奖人是 UC 伯克利的 Alyosha Efros 教授。




参考链接:

https://twitter.com/CVPR/status/1671545306838626306

https://cvpr2023.thecvf.com/

目录
打赏
0
0
0
0
367
分享
相关文章
本周 AI Benchmark 方向论文推荐
由北京大学和微软亚洲研究院的魏李等人提出的 FEA-Bench,是一个专为评估大型语言模型(LLMs)在代码库级别进行增量开发能力的基准测试。它从 83 个 GitHub 仓库中收集了 1,401 个任务实例,专注于新功能的实现。研究表明,即使是先进的 LLMs 在此任务中的表现仍远低于预期,揭示了仓库级代码开发的重大挑战。
43 0
今日AI论文推荐:ReCamMaster、PLADIS、SmolDocling、FlowTok
由浙江大学、快手科技等机构提出的ReCamMaster是一个相机控制的生成式视频重渲染框架,可以使用新的相机轨迹重现输入视频的动态场景。该工作的核心创新在于利用预训练的文本到视频模型的生成能力,通过一种简单但强大的视频条件机制。为克服高质量训练数据的稀缺问题,研究者使用虚幻引擎5构建了一个全面的多相机同步视频数据集,涵盖多样化的场景和相机运动。
76 2
今日AI论文推荐:ReCamMaster、PLADIS、SmolDocling、FlowTok
AI-Researcher:告别熬夜肝论文!港大开源AI科研神器,从选题到发表全自动
AI-Researcher 是香港大学数据科学实验室推出的开源自动化科研工具,基于大型语言模型(LLM)代理,支持从研究想法到论文发表的全流程自动化,涵盖文献综述、算法设计、实验验证和论文撰写等功能。
135 8
AI-Researcher:告别熬夜肝论文!港大开源AI科研神器,从选题到发表全自动
SpatialVLA:上海AI Lab联合上科大推出的空间具身通用操作模型
SpatialVLA 是由上海 AI Lab、中国电信人工智能研究院和上海科技大学等机构共同推出的新型空间具身通用操作模型,基于百万真实数据预训练,赋予机器人强大的3D空间理解能力,支持跨平台泛化控制。
56 7
SpatialVLA:上海AI Lab联合上科大推出的空间具身通用操作模型
Shandu:开源AI研究黑科技!自动挖掘多层级信息,智能生成结构化报告
Shandu 是一款开源的 AI 研究自动化工具,结合 LangChain 和 LangGraph 技术,能够自动化地进行多层次信息挖掘和分析,生成结构化的研究报告,适用于学术研究、市场分析和技术探索等多种场景。
164 8
Shandu:开源AI研究黑科技!自动挖掘多层级信息,智能生成结构化报告
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
77 1
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
LazyLLM:还在为AI应用开发掉头发?商汤开源智能体低代码开发工具,三行代码部署聊天机器人
LazyLLM 是一个低代码开发平台,可帮助开发者快速构建多智能体大语言模型应用,支持一键部署、跨平台操作和多种复杂功能。
76 3
DynamicCity:上海AI Lab开源4D场景神器助力自动驾驶场景!128帧动态LiDAR生成,1:1还原城市早晚高峰
DynamicCity 是上海 AI Lab 推出的 4D 动态场景生成框架,专注于生成具有语义信息的大规模动态 LiDAR 场景,适用于自动驾驶、机器人导航和交通流量分析等多种应用场景。
44 1
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
986 19
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
AI程序员:通义灵码 2.0应用VScode前端开发深度体验
AI程序员:通义灵码 2.0应用VScode前端开发深度体验,在软件开发领域,人工智能技术的融入正深刻改变着程序员的工作方式。通义灵码 2.0 作为一款先进的 AI 编程助手,与广受欢迎的代码编辑器 Visual Studio Code(VScode)相结合,为前端开发带来了全新的可能性。本文将详细分享通义灵码 2.0 在 VScode 前端开发环境中的深度使用体验。
136 2

热门文章

最新文章