函数计算提供的音视频解决方案

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 函数计算提供的音视频解决方案
  1. 函数计算提供的音视频解决方案相比自建或者SaaS方案的优势是多方面的。自建方案需要投入大量资源进行开发和维护,成本较高。而SaaS方案可能无法满足业务的灵活性需求。而函数计算可以免去运维的烦恼,成本可控,同时又能满足自建平迁和业务自定义的需求。落地周期也相对较短,因此在音视频客户中是一个热门的方案选择。可以考虑推荐函数计算环境或者自定义容器镜像来实现音视频解决方案。

  2. 函数计算非常适合Web/API服务业务的原因主要有:

    • A. 函数计算非常适合Node.js技术栈,前端程序员可以完成前后端全站业务开发,提高研发效率。
    • B. 函数计算能够快速搭建一个高性能、高可用的Web服务,快速验证业务逻辑,无需运维底层资源环境。
    • C. 函数计算具有百毫秒级的弹性能力,能够满足Web/API服务等在线业务的时延要求,能够有效应对流量峰谷。
    • D. 函数计算支持包年包月计费,让用户锁定费用而不用担心流量激增的问题。
    • E. 函数计算提供按需使用按量付费的模式,能够满足Web/API服务的持续客户增长场景,无需频繁升级架构。
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
9天前
|
弹性计算 Serverless 调度
面向Workload级别的灵活可配置Serverless弹性解决方案
Serverless作为云计算的延伸,能提供按需弹性伸缩的能力,让开发者无需关心具体资源部署,优化资源使用,因而被众多云厂商采用本文将介绍四种资源可配置插件,探讨它们的核心能力、技术原理,以及在实际应用中的优劣势。
|
1月前
|
人工智能 Serverless
解决方案 | 函数计算玩转 AI 大模型评测获奖名单公布!
解决方案 | 函数计算玩转 AI 大模型评测获奖名单公布!
|
2月前
|
消息中间件 人工智能 弹性计算
《触手可及,函数计算玩转 AI 大模型》解决方案评测
一文带你了解《触手可及,函数计算玩转 AI 大模型》解决方案的优与劣
72 14
|
4月前
|
消息中间件 关系型数据库 Serverless
函数计算驱动多媒体文件处理解决方案
《告别资源瓶颈,函数计算驱动多媒体文件处理》方案利用函数计算解耦文件处理与核心应用,提升高并发处理效率和服务稳定性。体验测评显示,文档引导相对全面但部分细节可优化;代码示例有实用性,但可能遇到环境配置等问题;函数计算性能、稳定性和成本满足需求,适合企业上云;云产品如函数计算功能强大、操作便捷,对象存储与其他服务集成良好,云服务器和数据库提供可靠支持。该方案虽有改进空间,但整体值得推荐,能为多媒体文件处理提供高效、稳定且成本可控的选择。
201 85
|
2月前
|
人工智能 弹性计算 数据可视化
解决方案|触手可及,函数计算玩转 AI 大模型 评测
解决方案|触手可及,函数计算玩转 AI 大模型 评测
36 1
|
2月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
102 1
|
3月前
|
人工智能 弹性计算 监控
触手可及,函数计算玩转 AI 大模型解决方案
阿里云推出的“触手可及,函数计算玩转 AI 大模型”解决方案,利用无服务器架构,实现AI大模型的高效部署和弹性伸缩。本文从实践原理、部署体验、优势展现及应用场景等方面全面评估该方案,指出其在快速部署、成本优化和运维简化方面的显著优势,同时也提出在性能监控、资源管理和安全性等方面的改进建议。
103 5
|
3月前
|
人工智能 自然语言处理 监控
体验《触手可及,函数计算玩转 AI 大模型》解决方案测评
本文介绍了《触手可及,函数计算玩转 AI 大模型》解决方案的测评体验。作者对解决方案的原理理解透彻,认为文档描述清晰但建议增加示例代码。部署过程中文档引导良好,但在环境配置和依赖安装上遇到问题,建议补充常见错误解决方案。体验展示了函数计算在弹性扩展和按需计费方面的优势,但需增加性能优化建议。最后,作者明确了该方案解决的主要问题及其适用场景,认为在处理大规模并发请求时需要更多监控和优化建议。
52 2
|
3月前
|
人工智能 弹性计算 运维
《触手可及,函数计算玩转 AI 大模型》解决方案测评
对《触手可及,函数计算玩转 AI 大模型》解决方案的整体理解较好,但建议在模型加载与推理过程、性能指标、示例代码等方面增加更多细节。部署体验中提供了较详细的文档,但在步骤细化、常见问题解答、环境依赖、权限配置等方面有改进空间。解决方案有效展示了函数计算的优势,建议增加性能对比、案例研究和成本分析。方案基本符合生产环境需求,但需增强高可用性、监控与日志、安全性和扩展性。
|
3月前
|
人工智能 弹性计算 运维
《触手可及,函数计算玩转 AI 大模型》解决方案深度评测
本次评测全面评估了《触手可及,函数计算玩转 AI 大模型》解决方案,涵盖实践原理理解、文档清晰度、部署体验、优势展现及生产环境适用性。方案通过函数计算实现AI大模型的高效部署,但模型加载、性能指标和示例代码等方面需进一步细化。文档需增加步骤细化、FAQ、性能指标和示例代码,以提升用户体验。部署体验方面,建议明确依赖库、权限配置和配置文件模板。优势展现方面,建议增加性能对比、案例研究和成本分析。此外,为满足实际生产需求,建议增强高可用性、监控与日志、安全性和扩展性。
46 2