时间、空间可控的视频生成走进现实,阿里大模型新作VideoComposer火了(2)

简介: 时间、空间可控的视频生成走进现实,阿里大模型新作VideoComposer火了(2)

事实上,可控性已经成为视觉内容创作的更高基准,其在定制化的图像生成方面取得了显着进步,但在视频生成领域仍然具有三大挑战:


  • 复杂的数据结构,生成的视频需同时满足时间维度上的动态变化的多样性和时空维度的内容一致性;
  • 复杂的引导条件,已存在的可控的视频生成需要复杂的条件是无法人为手动构建的。比如 Runway 提出的 Gen-1/2 需要依赖深度序列作条件,其能较好的实现视频间的结构迁移,但不能很好的解决可控性问题;
  • 缺乏运动可控性,运动模式是视频即复杂又抽象的属性,运动可控性是解决视频生成可控性的必要条件。


在此之前,阿里巴巴提出的 Composer 已经证明了组合性对图像生成可控性的提升具有极大的帮助,而 VideoComposer 这项研究同样是基于组合式生成范式,在解决以上三大挑战的同时提高视频生成的灵活性。具体是将视频分解成三种引导条件,即文本条件、空间条件、和视频特有的时序条件,然后基于此训练 Video LDM (Video Latent Diffusion Model)。特别地,其将高效的 Motion Vector 作为重要的显式的时序条件以学习视频的运动模式,并设计了一个简单有效的时空条件编码器 STC-encoder,保证条件驱动视频的时空连续性。在推理阶段,则可以随机组合不同的条件来控制视频内容。


实验结果表明,VideoComposer 能够灵活控制视频的时间和空间的模式,比如通过单张图、手绘图等生成特定的视频,甚至可以通过简单的手绘方向轻松控制目标的运动风格。该研究在 9 个不同的经典任务上直接测试 VideoComposer 的性能,均获得满意的结果,证明了 VideoComposer 通用性。


图 (a-c)VideoComposer 能够生成符合文本、空间和时间条件或其子集的视频;(d)VideoComposer 可以仅仅利用两笔画来生成满足梵高风格的视频,同时满足预期运动模式(红色笔画)和形状模式(白色笔画)


方法介绍


Video LDM


隐空间。Video LDM 首先引入预训练的编码器将输入的视频映射到隐空间表达,其中。然后,在用预先训练的解码器 D 将隐空间映射到像素空间上去。在 VideoComposer 中,参数设置


扩散模型。为了学习实际的视频内容分布,扩散模型学习从正态分布噪声中逐步去噪来恢复真实的视觉内容,该过程实际上是在模拟可逆的长度为 T=1000 的马尔可夫链。为了在隐空间中进行可逆过程,Video LDM 将噪声注入到中,得到噪声注入的隐变量。然后其通过用去噪函数作用在和输入条件 c 上,那么其优化目标如下:



为了充分探索利用空间局部的归纳偏置和序列的时间归纳偏置进行去噪,VideoComposer 将实例化为一个 3D UNet,同时使用时序卷积算子和交叉注意机制。



VideoComposer


组合条件。VideoComposer 将视频分解为三种不同类型的条件,即文本条件、空间条件和关键的时序条件,它们可以共同确定视频中的空间和时间模式。VideoComposer 是一个通用的组合式视频生成框架,因此,可以根据下游应用程序将更多的定制条件纳入 VideoComposer,不限于下述列出的条件:


  • 文本条件:文本 (Text) 描述以粗略的视觉内容和运动方面提供视频的直观指示,这也是常用的 T2V 常用的条件;


  • 空间条件:
  • 单张图 (Single Image),选择给定视频的第一帧作为空间条件来进行图像到视频的生成,以表达该视频的内容和结构;
  • 单张早图 (Single Sketch),使用 PiDiNet 提取第一个视频帧的草图作为第二个空间条件;
  • 风格(Style),为了进一步将单张图像的风格转移到合成的视频中,选择图像嵌入作为风格指导;


  • 时序条件:
  • 运动矢量(Motion Vector),运动矢量作为视频特有的元素表示为二维向量,即水平和垂直方向。它明确地编码了相邻两帧之间的逐像素移动。由于运动矢量的自然属性,将此条件视为时间平滑合成的运动控制信号,其从压缩视频中提取标准 MPEG-4 格式的运动矢量;
  • 深度序列(Depth Sequence),为了引入视频级别的深度信息,利用 PiDiNet 中的预训练模型提取视频帧的深度图;
  • 掩膜序列(Mask Sequence),引入管状掩膜来屏蔽局部时空内容,并强制模型根据可观察到的信息预测被屏蔽的区域;
  • 草图序列(Sketch Sequnce),与单个草图相比,草图序列可以提供更多的控制细节,从而实现精确的定制合成。


时空条件编码器。序列条件包含丰富而复杂的时空依赖关系,对可控的指示带来了较大挑战。为了增强输入条件的时序感知,该研究设计了一个时空条件编码器(STC-encoder)来纳入空时关系。具体而言,首先应用一个轻量级的空间结构,包括两个 2D 卷积和一个 avgPooling,用于提取局部空间信息,然后将得到的条件序列被输入到一个时序 Transformer 层进行时间建模。这样,STC-encoder 可以促进时间提示的显式嵌入,为多样化的输入提供统一的条件植入入口,从而增强帧间一致性。另外,该研究在时间维度上重复单个图像和单个草图的空间条件,以确保它们与时间条件的一致性,从而方便条件植入过程。


通过 STC-encoder 处理条件后,最终的条件序列具有与相同的空间形状,然后通过元素加法融合。最后,沿通道维度将合并后的条件序列与连接起来作为控制信号。对于文本和风格条件,利用交叉注意力机制注入文本和风格指导。


训练和推理


两阶段训练策略。虽然 VideoComposer 可以通过图像 LDM 的预训练进行初始化,其能够在一定程度上缓解训练难度,但模型难以同时具有时序动态感知的能力和多条件生成的能力,这个会增加训练组合视频生成的难度。因此,该研究采用了两阶段优化策略,第一阶段通过 T2V 训练的方法,让模型初步具有时序建模能力;第二阶段在通过组合式训练来优化 VideoComposer,以达到比较好的性能。


推理。在推理过程中,采用 DDIM 来提高推理效率。并采用无分类器指导来确保生成结果符合指定条件。生成过程可以形式化如下:



其中,ω 是指导比例;c1 和 c2 是两组条件。这种指导机制在两条件集合判断,可以通过强度控制来让模型具有更加灵活的控制。


实验结果


在实验探索中,该研究证明作为 VideoComposer 作为统一模型具有通用生成框架,并在 9 项经典任务上验证 VideoComposer 的能力。


,时长02:40


该研究的部分结果如下,在静态图片到视频生成(图 4)、视频 Inpainting(图 5)、静态草图生成生视频(图 6)、手绘运动控制视频(图 8)、运动迁移(图 A12)均能体现可控视频生成的优势。






团队介绍


公开信息显示,阿里巴巴在视觉基础模型上的研究主要围绕视觉表征大模型、视觉生成式大模型及其下游应用的研究,并在相关领域已经发表 CCF-A 类论文 60 余篇以及在多项行业竞赛中获得 10 余项国际冠军,比如可控图像生成方法 Composer、图文预训练方法 RA-CLIP 和 RLEG、未裁剪长视频自监督学习 HiCo/HiCo++、说话人脸生成方法 LipFormer 等均出自该团队。

目录
打赏
0
0
0
0
368
分享
相关文章
|
1月前
|
MIT 76页深度报告:AI加速创新马太效应,科学家产出分化加剧!缺乏判断力将被淘汰
近日,麻省理工学院(MIT)发布了一份76页的深度研究报告,探讨AI对科学发现和创新的影响。研究对象为1018名美国科学家,结果显示AI使新材料发现增加44%,专利申请增长39%,产品创新提升17%。然而,AI对高能力科学家的产出提升更显著,加剧了科学家间的分化。AI还改变了科学家的工作内容,减少了创意构思时间,增加了评估任务,导致工作满意度下降,但科学家对AI的信心增强。报告全面分析了AI带来的机遇与挑战。论文地址:https://conference.nber.org/conf_papers/f210475.pdf
58 14
BioEmu:微软黑科技炸场!生成式AI重构蛋白质模拟:千倍效率碾压传统计算,新药研发周期砍半
BioEmu 是微软推出的生成式深度学习系统,可在单个 GPU 上每小时生成数千种蛋白质结构样本,支持模拟动态变化、预测热力学性质,并显著降低计算成本。
75 2
BioEmu:微软黑科技炸场!生成式AI重构蛋白质模拟:千倍效率碾压传统计算,新药研发周期砍半
金鸡电影节创投大会AI短片《天线》:构建基于现实世界的想象空间
金鸡电影节创投大会AI短片《天线》:构建基于现实世界的想象空间
|
7月前
|
AI设计自己,代码造物主已来!UBC华人一作首提ADAS,数学能力暴涨25.9%
【9月更文挑战第15天】近年来,人工智能领域取得了显著进展,但智能体系统的设计仍需大量人力与专业知识。为解决这一问题,UBC研究人员提出了“自动智能体系统设计(ADAS)”新方法,通过基于代码的元智能体实现智能体系统的自动化设计与优化。实验结果表明,ADAS设计的智能体在多个领域中表现优异,尤其在阅读理解和数学任务上取得了显著提升。尽管如此,ADAS仍面临安全性、可扩展性和效率等挑战,需进一步研究解决。论文详情见链接:https://arxiv.org/pdf/2408.08435。
99 4
可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊
【6月更文挑战第4天】AI在可控核聚变研究中实现双托卡马克装置3D磁场全自动优化,助力抑制边缘能量爆发(ELMs),提升核聚变性能90%,成果登上《自然通讯》。虽有ELMs少量出现及装置适应性问题,但这一突破为经济可行的核聚变能源发展迈出重要步伐。[论文链接](https://www.nature.com/articles/s41467-024-48415-w)
214 1
我对计算机领域未来发展的期望和畅想
我期待未来计算机领域融合人性与智能,AI伙伴懂得人类情感,量子计算带来革命性变化。数字鸿沟将缩小,信息普惠全球,同时关注环保与可持续性,发展绿色计算。计算机系统将更安全,抵御网络威胁,保护用户隐私。最后,希望计算机科学教育普及,激发更多人投身科技创新,共创美好未来。
640 0
“烧钱”的大模型,如何迈过存储这道坎?
想要占领大模型应用的高地,数据和算力可以说是不可或缺的基石。和算力相关的讨论已经有很多,以至于英伟达的市值在2023年翻了两番。同样不应小觑的还有数据,除了数据量的爆炸性增长,数据的读取、写入、传输等基础性能,开始遇到越来越多的新挑战。
163 0
时间、空间可控的视频生成走进现实,阿里大模型新作VideoComposer火了(1)
时间、空间可控的视频生成走进现实,阿里大模型新作VideoComposer火了
296 0
从大模型到大降价,阿里云被集成战略背后的底气
“过去几个月,我碰到的所有客户、所有伙伴,包括我们所有的企业都在思考一个问题,就是如何用新一代的人工智能技术来武装自己。” 4月26日,当阿里巴巴董事会主席兼CEO张勇第一次以阿里云智能CEO的身份出现在阿里云合作伙伴大会上时指出,大模型让所有企业站在了同一起跑线上,再次激活了千行百业。
661 0
网易有道词典一个小更新,消除了你和全球一半人类的沟通障碍
完全不懂外语的你也可以拿起手机,和老外直接对话了:甚至不需要选择彼此说着的是什么语言。
318 0
网易有道词典一个小更新,消除了你和全球一半人类的沟通障碍
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等