Sam Altman谈OpenAI:面临GPU短缺恐慌,GPT-3或将开源

简介: Sam Altman谈OpenAI:面临GPU短缺恐慌,GPT-3或将开源


眼下 OpenAI 面临的最大问题是「缺芯」。


从 ChatGPT 问世以来,大模型和 AI 技术就引起全世界的广泛关注。一方面,人们惊叹于大模型的涌现能力,另一方面又对人工智能的可控性及未来发展产生担忧。今年已有包括图灵奖得主 Geoffrey Hinton、Yoshua Bengio 在内的 AI 领域专家等众多业内人士多次联合警告 AI 大模型将引发一系列风险,甚至有人呼吁叫停 GPT-4 后续 AI 大模型的研发。


OpenAI 作为 ChatGPT、GPT-4 等大模型背后的公司,无疑被推上了风口浪尖。OpenAI 的 CEO Sam Altman 近期正在全球巡回演讲,旨在消除人们对人工智能的「恐惧」,并听取 OpenAI 产品的开发人员和用户的意见。



据《Fortune》报道,5 月 Sam Altman 与一些开发人员和初创公司创始人闭门会面,并讲述了 OpenAI 的路线图和面临的挑战。这场闭门会的参与者之一 ——Humanloop 的联合创始人兼 CEO Raza Habib 最近在一篇博客中提及了 OpenAI 的产品规划和发展瓶颈。


原博客现已删除,但有网友上传了博客快照(副本),我们来看一下博客的具体内容:


OpenAI 现在面临的最大问题是受限于 GPU


目前 OpenAI 面临非常严峻的 GPU 限制,这也延迟了他们一些短期计划的实施。近来,客户投诉最多的是关于 API 的可靠性和速度问题。Sam 承认了这个问题,并解释说客户抱怨的大部分问题是由于 GPU 短缺造成的。


在处理文本方面,更长的 32k 上下文还不能面向更多人推出。现在 OpenAI 还没有完全克服注意力机制的 O (n^2) 扩展问题,虽然 OpenAI 似乎很快就能实现 100k-1M token 上下文窗口(在今年内)文本处理,但更大的文本处理窗口需要进一步的研究突破。


不仅如此,目前,微调 API 也受到 GPU 供应的限制。OpenAI 尚未使用像 Adapters 或 LoRa 这样的高效微调方法,因此微调运行和管理起来计算都非常密集。Sam 透漏更好的微调技术将在未来推出,他们甚至可能提供一个社区专门研究模型。


此外,专用容量提供也受到 GPU 供应的限制。OpenAI 还提供专用容量,为客户提供一个私有的模型副本。要使用此服务,客户必须愿意预先承诺支出 10 万美元。


OpenAI 的近期路线图


在交谈中,Sam 分享了 OpenAI API 的近期路线图,主要分两个阶段:


2023 的路线:


OpenAI 的首要任务是推出更便宜、更快的 GPT-4—— 总的来说,OpenAI 的目标是尽可能地降低智能成本(the cost of intelligence),因此随着时间的推移,API 的成本将会降低。

更长的上下文窗口 —— 在不久的将来,上下文窗口可能高达 100 万个 token。

微调 API—— 微调 API 将扩展到最新的模型,但其确切形式将由开发人员决定。

状态 API—— 现在调用聊天 API 时,你必须反复地通过相同的会话历史,并一次又一次地为相同的 toke 进行支付。将来版本的 API 可以记住会话历史记录。

2024 年路线:

多模态 —— 这是作为 GPT-4 版本的一部分进行演示的,但在更多 GPU 上线之前不能扩展到所有人。


插件没有 PMF,也不会很快出现在 API 中


很多开发人员都对通过 API 访问 ChatGPT 插件感兴趣,但 Sam 说他认为这些插件短期内不会发布。除了浏览之外,插件的使用表明他们还没有 PMF。Sam 指出,很多人希望自己的应用程序位于 ChatGPT 之内,但他们真正想要的是应用程序中的 ChatGPT。


除了与类 ChatGPT 竞争外,OpenAI 将避免与其客户竞争


很多开发者表示,当 OpenAI 发布新产品时,他们对使用 OpenAI API 构建的应用程序感到紧张,因为 OpenAI 最终可能会发布与他们竞争的产品。Sam 表示 OpenAI 不会发布 ChatGPT 之外更多的产品。他说有很多伟大的平台公司都有一个杀手级的应用程序,ChatGPT 将允许他们通过成为自己产品的客户来使 API 更好。ChatGPT 的愿景是成为一个超级智能的工作助手,但 OpenAI 不会涉足许多其他 GPT 的用例。


监管是必要的,但开源也是必要的


尽管 Sam 主张对未来的模型进行监管,但他并不认为现有的模型存在危险,并认为对它们进行监管或禁止将是一个巨大的错误。他再次强调了开源的重要性,并表示 OpenAI 正在考虑开源 GPT-3。OpenAI 之所以迟迟未能开源的部分原是因为他们觉得没多少人和公司有能力妥善管理如此大型的语言模型。


扩展定律仍然存在


最近许多文章都声称「巨型人工智能模型的时代已经结束」。Sam 表示这并没有准确地表达他的意思。


OpenAI 的内部数据显示,扩展定律仍然成立,而且增大模型的规模将继续提高性能。然而,模型的规模无法一直按照相同的比例增加,因为在短短几年内,OpenAI 已经使模型规模增大了数百万倍,继续这样做将不可持续。但这并不意味着 OpenAI 将停止努力使模型变得更大,而是意味着它们可能每年增加一倍或三倍的规模,而不是呈几个数量级的增长。


扩展模型仍然有效,这一事实对 AGI 的发展具有重要意义。扩展规模的理念是,我们可能已经有构建 AGI 所需的大部分要素,而剩下的大部分工作将采用现有的方法,并将它们扩展到更大的模型和更大的数据集上。如果模型扩展时代已经结束,我们到达 AGI 的时间将会更久。扩展定律仍然适用的事实暗示着我们会用更短的时间实现 AGI。


参考链接:

https://web.archive.org/web/20230601000258/https://website-nm4keew22-humanloopml.vercel.app/blog/openai-plans


相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
4月前
|
数据可视化 API Swift
全模态图像模型Nexus-Gen对齐GPT-4o!同时搞定,数据、训练框架、模型全面开源
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
251 17
|
5月前
|
人工智能 Linux API
119K star!无需GPU轻松本地部署多款大模型,DeepSeek支持!这个开源神器绝了
"只需一行命令就能在本地运行Llama 3、DeepSeek-R1等前沿大模型,支持Windows/Mac/Linux全平台,这个开源项目让AI开发从未如此简单!"
233 0
|
2月前
|
人工智能 数据挖掘 API
Kimi K2开源炸场,1万亿参数碾压GPT-4.1,成本仅Claude 4的1/5!
月之暗面开源的万亿参数大模型Kimi K2引发行业震动,48小时内即登顶OpenRouter API调用榜,GitHub项目激增200%。该模型在代码生成、Agent任务及中文创作上超越Claude 4,标志着中国大模型首次在三大核心能力上达到全球顶尖水平。
|
5月前
|
机器学习/深度学习 人工智能 算法
GPT-4.5 竟成小丑!OpenAI 推出 GPT-4.1:百万级上下文多模态语言模型,性价比远超 GPT-4o mini
OpenAI最新发布的GPT-4.1系列语言模型通过混合专家架构与上下文优化,实现百万级token处理能力,在编码任务中准确率提升21.4%,推理成本降低83%,支持多模态内容理解与低延迟响应。
220 27
GPT-4.5 竟成小丑!OpenAI 推出 GPT-4.1:百万级上下文多模态语言模型,性价比远超 GPT-4o mini
|
5月前
|
人工智能 测试技术 API
PaperBench:OpenAI开源AI智能体评测基准,8316节点精准考核复现能力
PaperBench是OpenAI推出的开源评测框架,通过8316个评分节点系统评估AI智能体复现学术论文的能力,涵盖理论理解、代码实现到实验执行全流程。
286 30
PaperBench:OpenAI开源AI智能体评测基准,8316节点精准考核复现能力
|
5月前
|
机器学习/深度学习 人工智能 前端开发
SWEET-RL:8B小模型暴打GPT-4?Meta开源强化学习黑科技,多轮任务成功率飙升6%
Meta最新开源的SWEET-RL框架通过优化多轮交互任务的信用分配机制,使Llama-3.1-8B模型在协作推理任务中的表现提升6%,性能达到顶尖大模型水平。
289 33
SWEET-RL:8B小模型暴打GPT-4?Meta开源强化学习黑科技,多轮任务成功率飙升6%
|
4月前
|
人工智能 API 开发者
狂揽7.5k星!这款开源API网关彻底解放开发者:一键聚合GPT-4、Suno、Midjourney,还能在线充值!
New API 是一款基于 One API 二次开发的 AI 模型接口管理与分发系统,支持多种大模型(如 GPT-4、Suno、Midjourney 等)统一封装为 OpenAI 格式接口调用。其核心功能包括多模型统一网关、企业级权限管控、“推理力度”分级、无魔法访问全球 AI 服务、灵活计费体系及开发者友好设计。技术架构采用 Golang + Gin 框架,支持高并发低延迟,适用于企业内部 AI 中台、多模型 SaaS 平台、学术研究协作及个人开发者工具等场景。项目开源地址:https://github.com/kingbug/new-api。
1019 6
|
5月前
|
人工智能 搜索推荐 开发者
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
OpenAI最新开源的BrowseComp基准包含1266个高难度网络检索问题,覆盖影视、科技、艺术等九大领域,其最新Deep Research模型以51.5%准确率展现复杂信息整合能力,为AI代理的浏览能力评估建立新标准。
273 4
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
|
5月前
|
编解码 开发者
ImagePulse图律脉动数据集开源发布:解码GPT-4o级图像生成能力,四大原子数据集+自动生成工具开放
ImagePulse图律脉动数据集开源发布:解码GPT-4o级图像生成能力,四大原子数据集+自动生成工具开放
122 3
|
6月前
|
机器学习/深度学习 人工智能 开发者
GPT-4o-mini-transcribe:OpenAI 推出实时语音秒转文本模型!高性价比每分钟0.003美元
GPT-4o-mini-transcribe 是 OpenAI 推出的语音转文本模型,基于 GPT-4o-mini 架构,采用知识蒸馏技术,适合在资源受限的设备上运行,具有高效、实时和高性价比的特点。
280 2
GPT-4o-mini-transcribe:OpenAI 推出实时语音秒转文本模型!高性价比每分钟0.003美元