数据库面试题——索引(二)

简介: 数据库面试题——索引(二)

说一说你对数据库事务的了解


事务可由一条非常简单的SQL语句组成,也可以由一组复杂的SQL语句组成。在事务中的操作,要么都执行修改,要么都不执行,这就是事务的目的,也是事务模型区别于文件系统的重要特征之一。

事务需遵循ACID四个特性:

  • A(atomicity),原子性。原子性指整个数据库事务是不可分割的工作单位。只有使事务中所有的数据库操作都执行成功,整个事务的执行才算成功。事务中任何一个SQL语句执行失败,那么已经执行成功的SQL语句也必须撤销,数据库状态应该退回到执行事务前的状态。
  • C(consistency),一致性。一致性指事务将数据库从一种状态转变为另一种一致的状态。在事务开始之前和事务结束以后,数据库的完整性约束没有被破坏。
  • I(isolation),隔离性。事务的隔离性要求每个读写事务的对象与其他事务的操作对象能相互分离,即该事务提交前对其他事务都不可见,这通常使用锁来实现。
  • D(durability) ,持久性。事务一旦提交,其结果就是永久性的,即使发生宕机等故障,数据库也能将数据恢复。持久性保证的是事务系统的高可靠性,而不是高可用性。


事务有哪几种类型,它们之间有什么区别?


事务可以分为以下几种类型:

  • 扁平事务:是事务类型中最简单的一种,而在实际生产环境中,这可能是使用最为频繁的事务。在扁平事务中,所有操作都处于同一层次,其由BEGIN WORK开始,由COMMIT WORK或ROLLBACK WORK结束。处于之间的操作是原子的,要么都执行,要么都回滚。
  • 带有保存点的扁平事务:除了支持扁平事务支持的操作外,允许在事务执行过程中回滚到同一事务中较早的一个状态,这是因为可能某些事务在执行过程中出现的错误并不会对所有的操作都无效,放弃整个事务不合乎要求,开销也太大。保存点(savepoint)用来通知系统应该记住事务当前的状态,以便以后发生错误时,事务能回到该状态。
  • 链事务:可视为保存点模式的一个变种。链事务的思想是:在提交一个事务时,释放不需要的数据对象,将必要的处理上下文隐式地传给下一个要开始的事务。注意,提交事务操作和开始下一个事务操作将合并为一个原子操作。这意味着下一个事务将看到上一个事务的结果,就好像在一个事务中进行的。
  • 嵌套事务:是一个层次结构框架。有一个顶层事务(top-level transaction)控制着各个层次的事务。顶层事务之下嵌套的事务被称为子事务(subtransaction),其控制每一个局部的变换。
  • 分布式事务:通常是一个在分布式环境下运行的扁平事务,因此需要根据数据所在位置访问网络中的不同节点。对于分布式事务,同样需要满足ACID特性,要么都发生,要么都失效。


WHERE和HAVING有什么区别?


WHERE是一个约束声明,使用WHERE约束来自数据库的数据,WHERE是在结果返回之前起作用的,WHERE中不能使用聚合函数。

HAVING是一个过滤声明,是在查询返回结果集以后对查询结果进行的过滤操作,在HAVING中可以使用聚合函数。另一方面,HAVING子句中不能使用除了分组字段和聚合函数之外的其他字段。


谈谈脏读,不可重复读,幻读


  1. 脏读:当前事务(A)中可以读到其他事务(B)未提交的数据(脏数据),这种现象是脏读。
  2. 不可重复读:在事务A中先后两次读取同一个数据,两次读取的结果不一样,这种现象称为不可重复读。脏读与不可重复读的区别在于:前者读到的是其他事务未提交的数据,后者读到的是其他事务已提交的数据。
  3. 幻读:在事务A中按照某个条件先后两次查询数据库,两次查询结果的条数不同,这种现象称为幻读。不可重复读与幻读的区别可以通俗的理解为:前者是数据变了,后者是数据的行数变了。


谈谈MySQL的事务隔离级别


SQL 标准定义了四种隔离级别,这四种隔离级别分别是:

  • 读未提交(READ UNCOMMITTED);
  • 读提交 (READ COMMITTED);
  • 可重复读 (REPEATABLE READ);
  • 串行化 (SERIALIZABLE)。

事务隔离是为了解决脏读、不可重复读、幻读问题,下表展示了 4 种隔离级别对这三个问题的解决程度:

隔离级别 脏读 不可重复读 幻读
READ UNCOMMITTED 可能 可能 可能
READ COMMITTED 不可能 可能 可能
REPEATABLE READ 不可能 不可能 可能
SERIALIZABLE 不可能 不可能 不可能
目录
相关文章
|
4月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
158 4
|
6月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
5月前
|
存储 算法 关系型数据库
数据库主键与索引详解
本文介绍了主键与索引的核心特性及其区别。主键具有唯一标识、数量限制、存储类型和自动排序等特点,用于确保数据完整性和提升查询效率;而索引通过特殊数据结构(如B+树、哈希)优化查询速度,适用于不同场景。文章分析了主键与索引的优劣、适用场景及工作原理,并对比两者在唯一性、数量限制、功能定位等方面的差异,为数据库设计提供指导。
|
8月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因?
● B+树更便于遍历:由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。 ● B+树的磁盘读写代价更低:B+树在内部节点上不包含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子节点上关联的数据也具有更好的缓存命中率。 ● B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条
|
12月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
12月前
|
架构师 数据库
大厂面试高频:数据库乐观锁的实现原理、以及应用场景
数据库乐观锁是必知必会的技术栈,也是大厂面试高频,十分重要,本文解析数据库乐观锁。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试高频:数据库乐观锁的实现原理、以及应用场景
|
11月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因?
B+树优化了数据存储和查询效率,数据仅存于叶子节点,便于区间查询和遍历,磁盘读写成本低,查询效率稳定,特别适合数据库索引及范围查询。
146 6
|
12月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因
B+树相较于B树,在数据存储、磁盘读写、查询效率及范围查询方面更具优势。数据仅存于叶子节点,便于高效遍历和区间查询;内部节点不含数据,提高缓存命中率;查询路径固定,效率稳定;特别适合数据库索引使用。
155 1
|
12月前
|
数据库 索引
数据库索引
数据库索引 1、索引:建立在表一列或多列的辅助对象,目的是加快访问表的数据。 2、索引的优点: (1)、创建唯一性索引,可以确保数据的唯一性; (2)、大大加快数据检索速度; (3)、加速表与表之间的连接; (4)、在查询过程中,使用优化隐藏器,提高系统性能。 3、索引的缺点: (1)、创建和维护索引需要耗费时间,随数据量增加而增加; (2)、索引占用物理空间; (3)、对表的数据进行增删改时,索引需要动态维护,降低了数据的维护速度。
187 2
|
12月前
|
SQL 关系型数据库 MySQL
阿里面试:1000万级大表, 如何 加索引?
45岁老架构师尼恩在其读者交流群中分享了如何在生产环境中给大表加索引的方法。文章详细介绍了两种索引构建方式:在线模式(Online DDL)和离线模式(Offline DDL),并深入探讨了 MySQL 5.6.7 之前的“影子策略”和 pt-online-schema-change 方案,以及 MySQL 5.6.7 之后的内部 Online DDL 特性。通过这些方法,可以有效地减少 DDL 操作对业务的影响,确保数据的一致性和完整性。尼恩还提供了大量面试题和解决方案,帮助读者在面试中充分展示技术实力。

热门文章

最新文章