数据库面试题——索引(一)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 数据库面试题——索引(一)

谈谈你对索引的理解


索引是一个单独的、存储在磁盘上的数据库结构,包含着对数据表里所有记录的引用指针。使用索引可以快速找出在某个或多个列中有一特定值的行,所有MySQL列类型都可以被索引,对相关列使用索引是提高查询操作速度的最佳途径。

优点:

  1. 通过创建唯一索引,可以保证数据库表中每一行数据的唯一性。
  2. 可以大大加快数据的查询速度,这也是创建索引的主要原因。
  3. 在实现数据的参考完整性方面,可以加速表和表之间的连接。
  4. 在使用分组和排序子句进行数据查询时,也可以显著减少查询中分组和排序的时间。

缺点:

  1. 创建索引和维护索引要耗费时间,并且随着数据量的增加所耗费的时间也会增加。
  2. 索引需要占磁盘空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果有大量的索引,索引文件可能比数据文件更快达到最大文件尺寸。
  3. 当对表中的数据进行增加、删除和修改的时候,索引也要动态地维护,这样就降低了数据的维护速度。


索引有哪几种


  1. 普通索引和唯一索引
    普通索引是MySQL中的基本索引类型,允许在定义索引的列中插入重复值和空值。
    唯一索引要求索引列的值唯一,允许有空值。如果是组合索引,则列值的组合必须唯一。
    主键索引是一种特殊的唯一索引,不允许有空值。
  2. 单列索引和组合索引
    单列索引即一个索引只包含单个列,一个表可以有多个单列索引。
    组合索引是指在表的多个字段组合上创建的索引,只有在查询条件中使用了这些字段的左边字段时,索引才会被使用。
  3. 全文索引
    全文索引类型为FULLTEXT,在定义索引的列上支持值的全文查找,允许在这些索引列中插入重复值和空值。
  4. 空间索引
    空间索引是对空间数据类型的字段建立的索引。MySQL使用SPATIAL关键字进行扩展,使得能够用创建正规索引类似的语法创建空间索引。创建空间索引的列,必须将其声明为NOT NULL,空间索引只能在存储引擎为MyISAM的表中创建。


聚集索引和非聚集索引


聚集索引:

表数据按照索引的顺序来存储,索引项的顺序与表中记录的物理顺序一致。对于聚类索引,叶子节点存储了真实的数据行,不再有单独的数据页。一张表最多只能有一个聚类索引。

非聚集索引:

表数据存储顺序与索引顺序无关。对于非聚集索引,叶节点包含索引字段值以及指向数据页,数据行的逻辑指针。


创建索引的方法


一.create


基本语法:

CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name  ON table_name (col_name [length],...) [ASC|DESC]

案例:

1. CREATE INDEX index_name
2. ON table_name (column)
3. USING BTREE;

index_name 是索引的名称,table_name 是要在其上创建索引的表的名称,column1、column2、... 是要在其上创建索引的列的名称。可以在括号中指定多个列。使用using字句设置索引类型,创建了一个 B-tree 类型的索引


二.alter


基本语法:

ALTER TABLE table_name ADD  [UNIQUE|FULLTEXT|SPATIAL] [INDEX|KEY] [index_name] (col_name[length],...) [ASC|DESC]

案例

ALTER TABLE book ADD UNIQUE INDEX UniqidIdx (bookId);

在bookId字段上建立名称为UniqidIdx的唯一索引


MySQL怎么判断要不要加索引


建议按照如下的原则来创建索引:

  1. 当唯一性是某种数据本身的特征时,指定唯一索引。使用唯一索引需能确保定义的列的数据完整性,以提高查询速度。
  2. 在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引,如果待排序的列有多个,可以在这些列上建立组合索引。


只要创建了索引,就一定会走索引吗?


不一定。

比如,在使用组合索引的时候,如果没有遵从“最左前缀”的原则进行搜索,则索引是不起作用的。


判断索引有没有生效


可以使用EXPLAIN语句查看索引是否正在使用。

举例,假设已经创建了book表,并已经在其year_publication字段上建立了普通索引。执行如下语句:

EXPLAIN SELECT * FROM book WHERE year_publication=1990;

EXPLAIN语句将为我们输出详细的SQL执行信息,其中:

  • possible_keys行给出了MySQL在搜索数据记录时可选用的各个索引。
  • key行是MySQL实际选用的索引。

如果possible_keys行和key行都包含year_publication字段,则说明在查询时使用了该索引。


MySQL的索引为什么用B+树?


B+树由B树和索引顺序访问方法演化而来,它是为磁盘或其他直接存取辅助设备设计的一种平衡查找树,在B+树中,所有记录节点都是按键值的大小顺序存放在同一层的叶子节点,各叶子节点通过指针进行链接。如下图:

B+树索引在数据库中的一个特点就是高扇出性,例如在InnoDB存储引擎中,每个页的大小为16KB。在数据库中,B+树的高度一般都在2~4层,这意味着查找某一键值最多只需要2到4次IO操作,这还不错。因为现在一般的磁盘每秒至少可以做100次IO操作,2~4次的IO操作意味着查询时间只需0.02~0.04秒。


模糊查询语句中如何使用索引?


方法一:

反转模糊查询的字段,但是注意,对于"%keywork%"的索引,此方法是无效的。

如:

select * from student where name like '%三';

改为:

select * from student where reverse(name) like reverse('%三');

方法二:

like查询百分号前置,并不是100%不会走索引。如果只select索引字段,或者select索引字段和主键,也会走索引的。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
4月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
158 4
|
6月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
5月前
|
存储 算法 关系型数据库
数据库主键与索引详解
本文介绍了主键与索引的核心特性及其区别。主键具有唯一标识、数量限制、存储类型和自动排序等特点,用于确保数据完整性和提升查询效率;而索引通过特殊数据结构(如B+树、哈希)优化查询速度,适用于不同场景。文章分析了主键与索引的优劣、适用场景及工作原理,并对比两者在唯一性、数量限制、功能定位等方面的差异,为数据库设计提供指导。
|
8月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因?
● B+树更便于遍历:由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。 ● B+树的磁盘读写代价更低:B+树在内部节点上不包含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子节点上关联的数据也具有更好的缓存命中率。 ● B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条
|
12月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
12月前
|
架构师 数据库
大厂面试高频:数据库乐观锁的实现原理、以及应用场景
数据库乐观锁是必知必会的技术栈,也是大厂面试高频,十分重要,本文解析数据库乐观锁。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试高频:数据库乐观锁的实现原理、以及应用场景
|
11月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因?
B+树优化了数据存储和查询效率,数据仅存于叶子节点,便于区间查询和遍历,磁盘读写成本低,查询效率稳定,特别适合数据库索引及范围查询。
146 6
|
12月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因
B+树相较于B树,在数据存储、磁盘读写、查询效率及范围查询方面更具优势。数据仅存于叶子节点,便于高效遍历和区间查询;内部节点不含数据,提高缓存命中率;查询路径固定,效率稳定;特别适合数据库索引使用。
155 1
|
12月前
|
数据库 索引
数据库索引
数据库索引 1、索引:建立在表一列或多列的辅助对象,目的是加快访问表的数据。 2、索引的优点: (1)、创建唯一性索引,可以确保数据的唯一性; (2)、大大加快数据检索速度; (3)、加速表与表之间的连接; (4)、在查询过程中,使用优化隐藏器,提高系统性能。 3、索引的缺点: (1)、创建和维护索引需要耗费时间,随数据量增加而增加; (2)、索引占用物理空间; (3)、对表的数据进行增删改时,索引需要动态维护,降低了数据的维护速度。
187 2
|
12月前
|
SQL 关系型数据库 MySQL
阿里面试:1000万级大表, 如何 加索引?
45岁老架构师尼恩在其读者交流群中分享了如何在生产环境中给大表加索引的方法。文章详细介绍了两种索引构建方式:在线模式(Online DDL)和离线模式(Offline DDL),并深入探讨了 MySQL 5.6.7 之前的“影子策略”和 pt-online-schema-change 方案,以及 MySQL 5.6.7 之后的内部 Online DDL 特性。通过这些方法,可以有效地减少 DDL 操作对业务的影响,确保数据的一致性和完整性。尼恩还提供了大量面试题和解决方案,帮助读者在面试中充分展示技术实力。

热门文章

最新文章