TCP 通信并发服务器详解(附有案例代码)

简介: TCP 通信并发服务器详解(附有案例代码)

一、多进程实现 TCP 通信并发服务器


1、多进程实现通信并发服务器思路


(1)一个父进程,多个子进程;

(2)父进程负责等待并接受客户端的连接;

(3)子进程:完成通信,接受一个客户端连接,就创建一个子进程用于通信。


2、多进程实现通信并发服务器案例代码


(1)客户端代码 client.c

// TCP通信的客户端
#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
int main() {
    // 1.创建套接字
    int fd = socket(AF_INET, SOCK_STREAM, 0);
    if(fd == -1) {
        perror("socket");
        exit(-1);
    }
    // 2.连接服务器端
    struct sockaddr_in serveraddr;
    serveraddr.sin_family = AF_INET;
    inet_pton(AF_INET, "192.168.172.128", &serveraddr.sin_addr.s_addr);         //对应自己电脑的IP地址
    serveraddr.sin_port = htons(9999);
    int ret = connect(fd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
    if(ret == -1) {
        perror("connect");
        exit(-1);
    }
    // 3. 通信
    char recvBuf[1024];
    int i = 0;
    while(1) {
        sprintf(recvBuf, "data : %d\n", i++);
        // 给服务器端发送数据
        write(fd, recvBuf, strlen(recvBuf)+1);          //+1是加上字符长结束字符
        int len = read(fd, recvBuf, sizeof(recvBuf));
        if(len == -1) {
            perror("read");
            exit(-1);
        } else if(len > 0) {
            printf("recv server : %s\n", recvBuf);
        } else if(len == 0) {
            // 表示服务器端断开连接
            printf("server closed...");
            break;
        }
        sleep(1);
    }
    // 关闭连接
    close(fd);
    return 0;
}


(2)服务端代码 server_process.c

#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <wait.h>
#include <errno.h>
void recyleChild(int arg) {
    while(1) {
        int ret = waitpid(-1, NULL, WNOHANG);
        if(ret == -1) {
            // 所有的子进程都回收了
            break;
        }else if(ret == 0) {
            // 还有子进程活着
            break;
        } else if(ret > 0){
            // 被回收了
            printf("子进程 %d 被回收了\n", ret);
        }
    }
}
int main() {
    struct sigaction act;
    act.sa_flags = 0;
    sigemptyset(&act.sa_mask);
    act.sa_handler = recyleChild;
    // 注册信号捕捉,释放资源,此时不能用wait,该函数会阻塞影响通信
    sigaction(SIGCHLD, &act, NULL);
    // 创建socket
    int lfd = socket(PF_INET, SOCK_STREAM, 0);
    if(lfd == -1){
        perror("socket");
        exit(-1);
    }
    struct sockaddr_in saddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(9999);
    saddr.sin_addr.s_addr = INADDR_ANY;
    // 绑定
    int ret = bind(lfd,(struct sockaddr *)&saddr, sizeof(saddr));
    if(ret == -1) {
        perror("bind");
        exit(-1);
    }
    // 监听
    ret = listen(lfd, 128);
    if(ret == -1) {
        perror("listen");
        exit(-1);
    }
    // 不断循环等待客户端连接
    while(1) {
        struct sockaddr_in cliaddr;
        int len = sizeof(cliaddr);
        // 接受连接
        int cfd = accept(lfd, (struct sockaddr*)&cliaddr, &len);
        if(cfd == -1) {
            if(errno == EINTR) {
                continue;
            }
            perror("accept");
            exit(-1);
        }
        // 每一个连接进来,创建一个子进程跟客户端通信
        pid_t pid = fork();
        if(pid == 0) {
            // 子进程
            // 获取客户端的信息
            char cliIp[16];
            inet_ntop(AF_INET, &cliaddr.sin_addr.s_addr, cliIp, sizeof(cliIp));
            unsigned short cliPort = ntohs(cliaddr.sin_port);
            printf("client ip is : %s, prot is %d\n", cliIp, cliPort);
            // 接收客户端发来的数据
            char recvBuf[1024];
            while(1) {
                int len = read(cfd, &recvBuf, sizeof(recvBuf));
                if(len == -1) {
                    perror("read");
                    exit(-1);
                }else if(len > 0) {
                    printf("recv client : %s\n", recvBuf);
                } else if(len == 0) {
                    printf("client closed....\n");
                    break;
                }
                write(cfd, recvBuf, strlen(recvBuf) + 1);
            }
            close(cfd);
            exit(0);    // 退出当前子进程
        }
    }
    close(lfd);
    return 0;
}


二、多线程实现 TCP 通信并发服务器


1、多进程实现通信并发服务器思路


(1)一个父线程,多个子线程;

(2)父线程负责等待并接受客户端的连接;

(3)子线程:完成通信,接受一个客户端连接,就创建一个子线程用于通信。


2、多线程实现通信并发服务器案例代码

#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
struct sockInfo {
    int fd; // 通信的文件描述符
    struct sockaddr_in addr;
    pthread_t tid;  // 线程号
};
struct sockInfo sockinfos[128];
void * working(void * arg) {
    // 子线程和客户端通信   cfd 客户端的信息 线程号
    // 获取客户端的信息
    struct sockInfo * pinfo = (struct sockInfo *)arg;
    char cliIp[16];
    inet_ntop(AF_INET, &pinfo->addr.sin_addr.s_addr, cliIp, sizeof(cliIp));
    unsigned short cliPort = ntohs(pinfo->addr.sin_port);
    printf("client ip is : %s, prot is %d\n", cliIp, cliPort);
    // 接收客户端发来的数据
    char recvBuf[1024];
    while(1) {
        int len = read(pinfo->fd, &recvBuf, sizeof(recvBuf));
        if(len == -1) {
            perror("read");
            exit(-1);
        }else if(len > 0) {
            printf("recv client : %s\n", recvBuf);
        } else if(len == 0) {
            printf("client closed....\n");
            break;
        }
        write(pinfo->fd, recvBuf, strlen(recvBuf) + 1);
    }
    close(pinfo->fd);
    return NULL;
}
int main() {
    // 创建socket
    int lfd = socket(PF_INET, SOCK_STREAM, 0);
    if(lfd == -1){
        perror("socket");
        exit(-1);
    }
    struct sockaddr_in saddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(9999);
    saddr.sin_addr.s_addr = INADDR_ANY;
    // 绑定
    int ret = bind(lfd,(struct sockaddr *)&saddr, sizeof(saddr));
    if(ret == -1) {
        perror("bind");
        exit(-1);
    }
    // 监听
    ret = listen(lfd, 128);
    if(ret == -1) {
        perror("listen");
        exit(-1);
    }
    // 初始化数据
    int max = sizeof(sockinfos) / sizeof(sockinfos[0]);
    for(int i = 0; i < max; i++) {
        bzero(&sockinfos[i], sizeof(sockinfos[i]));
        sockinfos[i].fd = -1;
        sockinfos[i].tid = -1;
    }
    // 循环等待客户端连接,一旦一个客户端连接进来,就创建一个子线程进行通信
    while(1) {
        struct sockaddr_in cliaddr;
        int len = sizeof(cliaddr);
        // 接受连接
        int cfd = accept(lfd, (struct sockaddr*)&cliaddr, &len);
        struct sockInfo * pinfo;
        for(int i = 0; i < max; i++) {
            // 从这个数组中找到一个可以用的sockInfo元素
            if(sockinfos[i].fd == -1) {
                pinfo = &sockinfos[i];
                break;
            }
            if(i == max - 1) {
                sleep(1);
                i--;
            }
        }
        pinfo->fd = cfd;
        memcpy(&pinfo->addr, &cliaddr, len);
        // 创建子线程
        pthread_create(&pinfo->tid, NULL, working, pinfo);
        pthread_detach(pinfo->tid);
    }
    close(lfd);
    return 0;
}


相关文章
|
9天前
|
Java
Java Socket编程与多线程:提升客户端-服务器通信的并发性能
【6月更文挑战第21天】Java网络编程中,Socket结合多线程提升并发性能,服务器对每个客户端连接启动新线程处理,如示例所示,实现每个客户端的独立操作。多线程利用多核处理器能力,避免串行等待,提升响应速度。防止死锁需减少共享资源,统一锁定顺序,使用超时和重试策略。使用synchronized、ReentrantLock等维持数据一致性。多线程带来性能提升的同时,也伴随复杂性和挑战。
|
9天前
|
安全 Java 网络安全
Java Socket编程教程:构建安全可靠的客户端-服务器通信
【6月更文挑战第21天】构建安全的Java Socket通信涉及SSL/TLS加密、异常处理和重连策略。示例中,`SecureServer`使用SSLServerSocketFactory创建加密连接,而`ReliableClient`展示异常捕获与自动重连。理解安全意识,如防数据截获和中间人攻击,是首要步骤。通过良好的编程实践,确保网络应用在复杂环境中稳定且安全。
|
7天前
|
数据挖掘 数据库
服务器数据恢复—服务器raid磁盘故障离线导致阵列瘫痪的数据恢复案例
服务器数据恢复环境: 一台某品牌DL380服务器中3块SAS硬盘组建了一组raid。 服务器故障: RAID中多块磁盘出现故障离线导致RAID瘫痪,其中一块硬盘状态指示灯显示红色。服务器上运行的数据库在D分区,备份文件存放在E分区。由于RAID瘫痪,D分区无法识别,E分区可识别但是拷贝文件报错。管理员重启服务器,导致RAID中先离线的硬盘上线并开始同步数据,同步没有完成管理员意识到有问题,于是就强制关机了,之后就没有再动过服务器。
服务器数据恢复—服务器raid磁盘故障离线导致阵列瘫痪的数据恢复案例
|
2天前
|
SQL 存储 数据库
服务器数据恢复—X3850服务器中虚拟机误删除的数据恢复案例
服务器数据恢复环境: 某品牌X3850系列服务器(用于VMware虚拟主机)+某品牌RD220i系列存储(用于存放虚拟机文件)+VMware ESXi虚拟化操作系统。 虚拟机操作系统:Windows Server,虚拟机上运行SQL Server数据库(宏桥和索菲两套应用的数据库)。 虚拟磁盘:数据盘(精简模式)+ 快照数据盘。 服务器故障: 意外断电导致某台虚拟机无法正常启动。管理员检查后发现此虚拟机除了磁盘文件以外其他配置文件全部丢失,xxx-flat.vmdk磁盘文件和xxx-000001-delta.vmdk快照文件还在。管理员联系VMware工程师寻求帮助。VMware工程师尝试新
服务器数据恢复—X3850服务器中虚拟机误删除的数据恢复案例
|
8天前
|
JSON API 数据库
Python使用Quart作为web服务器的代码实现
Quart 是一个异步的 Web 框架,它使用 ASGI 接口(Asynchronous Server Gateway Interface)而不是传统的 WSGI(Web Server Gateway Interface)。这使得 Quart 特别适合用于构建需要处理大量并发连接的高性能 Web 应用程序。与 Flask 类似,Quart 也非常灵活,可以轻松地构建 RESTful API、WebSockets、HTTP/2 服务器推送等。
|
5天前
|
存储 算法 小程序
服务器数据恢复—OceanStor 5800存储磁盘阵列数据恢复案例
服务器存储数据恢复环境: 华为OceanStor 5800存储,该存储中有一组由10块硬盘组建的raid6磁盘阵列,供企业内部使用,服务器安装linux操作系统+EXT3文件系统,划分2个lun。 服务器存储故障: 管理员发现存储中raid6磁盘阵列不可用,于是将原raid6阵列中的磁盘作为成员盘重新分配raid,并对raid进行初始化。初始化进行到40%左右时,管理员意识到问题,于是强行终止初始化,部分数据已经被破坏,而且不可逆。 导致服务器存储中数据丢失的原因是raid失效,管理员将raid6阵列中的9块硬盘作为成员盘来重新分配riad5阵列,并进行了长时间的初始化操作,这个过程对原始数
|
4天前
|
Shell 网络安全 开发工具
git实现服务器自动push拉取代码--webhooks
git实现服务器自动push拉取代码--webhooks
14 1
|
5天前
|
存储 小程序 数据库
服务器数据恢复—异常断电导致存储不可用的数据恢复案例
服务器存储数据恢复环境: 一台存储中有一组由12块SAS硬盘组建的RAID6磁盘阵列,划分为一个卷,分配给几台Vmware ESXI主机做共享存储。该卷中存放了大量Windows虚拟机,这些虚拟机系统盘是统一大小,数据盘大小不确定,数据盘是精简模式。 服务器存储故障: 机房断电导致服务器存储异常关机,加电后存储无法使用。
服务器数据恢复—异常断电导致存储不可用的数据恢复案例
|
6天前
|
网络协议
逆向学习网络篇:心跳包与TCP服务器
逆向学习网络篇:心跳包与TCP服务器
10 0
|
9天前
|
网络协议 Java Linux
探索Java Socket编程:实现跨平台客户端-服务器通信的奥秘
【6月更文挑战第21天】Java Socket编程示例展示了如何构建跨平台聊天应用。服务器端使用`ServerSocket`监听客户端连接,每个连接启动新线程处理。客户端连接服务器,发送并接收消息。Java的跨平台能力确保代码在不同操作系统上无需修改即可运行,简化开发与维护。