TCP 通信并发服务器详解(附有案例代码)

简介: TCP 通信并发服务器详解(附有案例代码)

一、多进程实现 TCP 通信并发服务器


1、多进程实现通信并发服务器思路


(1)一个父进程,多个子进程;

(2)父进程负责等待并接受客户端的连接;

(3)子进程:完成通信,接受一个客户端连接,就创建一个子进程用于通信。


2、多进程实现通信并发服务器案例代码


(1)客户端代码 client.c

// TCP通信的客户端
#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
int main() {
    // 1.创建套接字
    int fd = socket(AF_INET, SOCK_STREAM, 0);
    if(fd == -1) {
        perror("socket");
        exit(-1);
    }
    // 2.连接服务器端
    struct sockaddr_in serveraddr;
    serveraddr.sin_family = AF_INET;
    inet_pton(AF_INET, "192.168.172.128", &serveraddr.sin_addr.s_addr);         //对应自己电脑的IP地址
    serveraddr.sin_port = htons(9999);
    int ret = connect(fd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
    if(ret == -1) {
        perror("connect");
        exit(-1);
    }
    // 3. 通信
    char recvBuf[1024];
    int i = 0;
    while(1) {
        sprintf(recvBuf, "data : %d\n", i++);
        // 给服务器端发送数据
        write(fd, recvBuf, strlen(recvBuf)+1);          //+1是加上字符长结束字符
        int len = read(fd, recvBuf, sizeof(recvBuf));
        if(len == -1) {
            perror("read");
            exit(-1);
        } else if(len > 0) {
            printf("recv server : %s\n", recvBuf);
        } else if(len == 0) {
            // 表示服务器端断开连接
            printf("server closed...");
            break;
        }
        sleep(1);
    }
    // 关闭连接
    close(fd);
    return 0;
}


(2)服务端代码 server_process.c

#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <wait.h>
#include <errno.h>
void recyleChild(int arg) {
    while(1) {
        int ret = waitpid(-1, NULL, WNOHANG);
        if(ret == -1) {
            // 所有的子进程都回收了
            break;
        }else if(ret == 0) {
            // 还有子进程活着
            break;
        } else if(ret > 0){
            // 被回收了
            printf("子进程 %d 被回收了\n", ret);
        }
    }
}
int main() {
    struct sigaction act;
    act.sa_flags = 0;
    sigemptyset(&act.sa_mask);
    act.sa_handler = recyleChild;
    // 注册信号捕捉,释放资源,此时不能用wait,该函数会阻塞影响通信
    sigaction(SIGCHLD, &act, NULL);
    // 创建socket
    int lfd = socket(PF_INET, SOCK_STREAM, 0);
    if(lfd == -1){
        perror("socket");
        exit(-1);
    }
    struct sockaddr_in saddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(9999);
    saddr.sin_addr.s_addr = INADDR_ANY;
    // 绑定
    int ret = bind(lfd,(struct sockaddr *)&saddr, sizeof(saddr));
    if(ret == -1) {
        perror("bind");
        exit(-1);
    }
    // 监听
    ret = listen(lfd, 128);
    if(ret == -1) {
        perror("listen");
        exit(-1);
    }
    // 不断循环等待客户端连接
    while(1) {
        struct sockaddr_in cliaddr;
        int len = sizeof(cliaddr);
        // 接受连接
        int cfd = accept(lfd, (struct sockaddr*)&cliaddr, &len);
        if(cfd == -1) {
            if(errno == EINTR) {
                continue;
            }
            perror("accept");
            exit(-1);
        }
        // 每一个连接进来,创建一个子进程跟客户端通信
        pid_t pid = fork();
        if(pid == 0) {
            // 子进程
            // 获取客户端的信息
            char cliIp[16];
            inet_ntop(AF_INET, &cliaddr.sin_addr.s_addr, cliIp, sizeof(cliIp));
            unsigned short cliPort = ntohs(cliaddr.sin_port);
            printf("client ip is : %s, prot is %d\n", cliIp, cliPort);
            // 接收客户端发来的数据
            char recvBuf[1024];
            while(1) {
                int len = read(cfd, &recvBuf, sizeof(recvBuf));
                if(len == -1) {
                    perror("read");
                    exit(-1);
                }else if(len > 0) {
                    printf("recv client : %s\n", recvBuf);
                } else if(len == 0) {
                    printf("client closed....\n");
                    break;
                }
                write(cfd, recvBuf, strlen(recvBuf) + 1);
            }
            close(cfd);
            exit(0);    // 退出当前子进程
        }
    }
    close(lfd);
    return 0;
}


二、多线程实现 TCP 通信并发服务器


1、多进程实现通信并发服务器思路


(1)一个父线程,多个子线程;

(2)父线程负责等待并接受客户端的连接;

(3)子线程:完成通信,接受一个客户端连接,就创建一个子线程用于通信。


2、多线程实现通信并发服务器案例代码

#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
struct sockInfo {
    int fd; // 通信的文件描述符
    struct sockaddr_in addr;
    pthread_t tid;  // 线程号
};
struct sockInfo sockinfos[128];
void * working(void * arg) {
    // 子线程和客户端通信   cfd 客户端的信息 线程号
    // 获取客户端的信息
    struct sockInfo * pinfo = (struct sockInfo *)arg;
    char cliIp[16];
    inet_ntop(AF_INET, &pinfo->addr.sin_addr.s_addr, cliIp, sizeof(cliIp));
    unsigned short cliPort = ntohs(pinfo->addr.sin_port);
    printf("client ip is : %s, prot is %d\n", cliIp, cliPort);
    // 接收客户端发来的数据
    char recvBuf[1024];
    while(1) {
        int len = read(pinfo->fd, &recvBuf, sizeof(recvBuf));
        if(len == -1) {
            perror("read");
            exit(-1);
        }else if(len > 0) {
            printf("recv client : %s\n", recvBuf);
        } else if(len == 0) {
            printf("client closed....\n");
            break;
        }
        write(pinfo->fd, recvBuf, strlen(recvBuf) + 1);
    }
    close(pinfo->fd);
    return NULL;
}
int main() {
    // 创建socket
    int lfd = socket(PF_INET, SOCK_STREAM, 0);
    if(lfd == -1){
        perror("socket");
        exit(-1);
    }
    struct sockaddr_in saddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(9999);
    saddr.sin_addr.s_addr = INADDR_ANY;
    // 绑定
    int ret = bind(lfd,(struct sockaddr *)&saddr, sizeof(saddr));
    if(ret == -1) {
        perror("bind");
        exit(-1);
    }
    // 监听
    ret = listen(lfd, 128);
    if(ret == -1) {
        perror("listen");
        exit(-1);
    }
    // 初始化数据
    int max = sizeof(sockinfos) / sizeof(sockinfos[0]);
    for(int i = 0; i < max; i++) {
        bzero(&sockinfos[i], sizeof(sockinfos[i]));
        sockinfos[i].fd = -1;
        sockinfos[i].tid = -1;
    }
    // 循环等待客户端连接,一旦一个客户端连接进来,就创建一个子线程进行通信
    while(1) {
        struct sockaddr_in cliaddr;
        int len = sizeof(cliaddr);
        // 接受连接
        int cfd = accept(lfd, (struct sockaddr*)&cliaddr, &len);
        struct sockInfo * pinfo;
        for(int i = 0; i < max; i++) {
            // 从这个数组中找到一个可以用的sockInfo元素
            if(sockinfos[i].fd == -1) {
                pinfo = &sockinfos[i];
                break;
            }
            if(i == max - 1) {
                sleep(1);
                i--;
            }
        }
        pinfo->fd = cfd;
        memcpy(&pinfo->addr, &cliaddr, len);
        // 创建子线程
        pthread_create(&pinfo->tid, NULL, working, pinfo);
        pthread_detach(pinfo->tid);
    }
    close(lfd);
    return 0;
}


相关文章
|
2天前
|
运维 数据挖掘 索引
服务器数据恢复—Lustre分布式文件系统服务器数据恢复案例
5台节点服务器,每台节点服务器上有一组RAID5阵列。每组RAID5阵列上有6块硬盘(其中1块硬盘设置为热备盘,其他5块硬盘为数据盘)。上层系统环境为Lustre分布式文件系统。 机房天花板漏水导致这5台节点服务器进水,每台服务器都有至少2块硬盘出现故障。每台服务器中的RAID5阵列短时间内同时掉线2块或以上数量的硬盘,导致RAID崩溃,服务器中数据无法正常读取。
|
1天前
|
缓存 网络协议 Java
【JavaEE】——TCP回显服务器(万字长文超详细)
ServerSocket类,Socket类,PrintWriter缓冲区问题,Socket文件释放问题,多线程问题
|
7天前
|
存储 数据挖掘
服务器数据恢复—V7000存储上多块Mdisk成员盘出现故障的数据恢复案例
服务器存储数据恢复环境: 一台V7000存储上共12块SAS机械硬盘(其中1块是热备盘),组建了2组Mdisk,创建了一个pool。挂载在小型机上作为逻辑盘使用,小型机上安装的AIX+Sybase。 服务器存储故障: V7000存储中磁盘出现故障,管理员发现问题后立即更换磁盘。新更换的硬盘在上线同步数据的时候,存储上另一块磁盘也出现问题,导致逻辑盘无法挂接在小型机上,业务暂时中断。V7000存储的管理界面上显示两块硬盘故障脱机。 pool无法加载,其中三个通用卷均无法挂载。
|
1月前
|
存储 Oracle 关系型数据库
服务器数据恢复—EVA存储硬盘读写性能不稳定掉线的数据恢复案例
服务器存储数据恢复环境: 一台EVA某型号控制器+EVA扩展柜+FC磁盘。 服务器存储故障&检测: 磁盘故障导致该EVA存储中LUN不可用,导致上层应用无法正常使用。
97 47
|
16天前
|
安全 数据挖掘
服务器数据恢复—RAID5阵列中两块硬盘离线导致阵列崩溃的数据恢复案例
服务器数据恢复环境: 两组分别由4块SAS接口硬盘组建的raid5阵列,两组raid5阵列划分LUN并由LVM管理,格式化为EXT3文件系统。 服务器故障: RAID5阵列中一块硬盘未知原因离线,热备盘自动激活上线替换离线硬盘。在热备盘上线过程中,raid5阵列中又有一块硬盘离线。热备盘同步失败,该raid阵列崩溃,LVM结构变得不完整,文件系统无法正常使用。
|
21天前
|
存储 监控 调度
云服务器成本优化深度解析与实战案例
本文深入探讨了云服务器成本优化的策略与实践,涵盖基本原则、具体策略及案例分析。基本原则包括以实际需求为导向、动态调整资源、成本控制为核心。具体策略涉及选择合适计费模式、优化资源配置、存储与网络配置、实施资源监控与审计、应用性能优化、利用优惠政策及考虑多云策略。文章还通过电商、制造企业和初创团队的实际案例,展示了云服务器成本优化的有效性,最后展望了未来的发展趋势,包括智能化优化、多云管理和绿色节能。
|
24天前
|
存储 运维 数据挖掘
服务器数据恢复—EVA存储中多块硬盘离线导致存储崩溃的数据恢复案例
一台HP EVA存储中有23块硬盘,挂接到一台windows server操作系统的服务器。 EVA存储上有三个硬盘指示灯亮黄灯,此刻存储还能正常使用。管理员在更换硬盘的过程中,又出现一块硬盘对应的指示灯亮黄灯,存储崩溃,无法使用了。
|
1月前
|
数据挖掘 Linux 数据库
服务器数据恢复—reiserfs文件系统数据恢复案例
服务器数据恢复环境: 一台服务器中有一组由4块SAS硬盘组建的RAID5阵列,上层安装linux操作系统统。分区结构:boot分区+LVM卷+swap分区(按照顺序),LVM卷中划分了一个reiserfs文件系统作为根分区。 服务器故障: 服务器操作系统在运行过程中由于未知原因崩溃,管理员重装操作系统后发现分区结构变为:boot分区+swap分区+LVM卷(按照顺序),LVM卷中文件系统位置有个空的reiserfs超级块。 用户方需要恢复reiserfs文件系统中所有数据,包含数据库、网站程序与网页、OA系统中所有办公文档。
服务器数据恢复—reiserfs文件系统数据恢复案例
|
25天前
|
数据挖掘 Linux Windows
服务器数据恢复—服务器raid0数据恢复及数据迁移的案例
某品牌服务器上有一组由两块SAS硬盘组建的raid0阵列,上层是windows server操作系统+ntfs文件系统。服务器上一个硬盘指示灯显示黄颜色,该指示灯对应的硬盘离线,raid不可用。
|
8天前
|
存储 数据挖掘
服务器数据恢复—ZFS文件系统下数据恢复案例
服务器存储数据恢复环境: ZFS Storage 7320存储阵列中有32块硬盘。32块硬盘分为4组,每组8块硬盘,共组建了3组RAIDZ,每组raid都配置了热备盘。 服务器存储故障: 服务器存储运行过程中突然崩溃,排除人为误操作、断电、进水和其他机房不稳定因素。管理员重启服务器存储,系统无法进入,需要恢复服务器存储中的数据。

热门文章

最新文章