MySQL中count(*)和information_schema.tables中的table_rows值不相同

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL中count(*)和information_schema.tables中的table_rows值不相同

前两天我还在高高兴兴地写了一篇文章《一条SQL查询出MySQL数据库中所有表的数据量大小》,心想这也太方便了,只用一条SQL就能统计出所有表的数据量,但没想到,最终还是翻车了。。。


翻车过程如下:


有一张表,在information_schema.tables中,其table_rows显示为1316万行,如图所示:

但是使用count(*)来查询该表的行数,结果居然为6055万行。


为什么两者不一致,且差距如此巨大呢?

翻车原因:

我们先来看一下官网的解释:

The TABLES table provides information about tables in databases.


information_schema.tables这张表提供数据库中表的一些信息;


TABLE_ROWS: The number of rows. Some storage engines, such as MyISAM, store the exact count. For other storage engines, such as InnoDB, this value is an approximation, and may vary from the actual value by as much as 40% to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.


table_rows这个字段,其值为行的个数。对于一些存储引擎,比如MyISAM,存储的是确切的行数。但是对于其他的存储引擎,比如InnoDB,这个值则是估算的,可能与实际值相差40%至50%。这种情况下应该使用COUNT(*)来获取准确的行数统计。


For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also true if the InnoDB table is partitioned.)


对于InnoDB表,行计数只是SQL优化中使用的粗略估计。(这也适用于 InnoDB 表进行了分区的情况。)


想要获取更多信息,可以参考MySQL官网中的The INFORMATION_SCHEMA TABLES Table;

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
5天前
|
缓存 NoSQL 关系型数据库
MySQL战记:Count( *)实现之谜与计数策略的选择
本文深入探讨了MySQL中`count(*)`的不同实现方式,特别是MyISAM和InnoDB引擎的区别,以及各种计数方法的性能比较。同时,文章分析了使用缓存系统(如Redis)与数据库保存计数的优劣,并强调了在高并发场景下保持数据一致性的挑战。
MySQL战记:Count( *)实现之谜与计数策略的选择
|
28天前
|
SQL 关系型数据库 MySQL
MySQL性能探究:count(*)与count(1)的性能对决
在MySQL数据库的性能优化中,对查询语句的细微差别有着深入的理解是非常重要的。`count(*)`和`count(1)`是两种常用的聚合函数,用于计算行数。在面试中,面试官经常会问到这两种函数的性能差异。本文将探讨`count(*)`与`count(1)`的性能对比,并整理十道经典的MySQL面试题,帮助你在面试中游刃有余。
69 3
|
26天前
|
关系型数据库 MySQL 索引
MySQL的group by与count(), *字段使用问题
正确使用 `GROUP BY`和 `COUNT()`函数是进行数据聚合查询的基础。通过理解它们的用法和常见问题,可以有效避免查询错误和性能问题。无论是在单列分组、多列分组还是结合其他聚合函数的场景中,掌握这些技巧和注意事项都能大大提升数据查询和分析的效率。
95 0
|
2月前
|
存储 关系型数据库 MySQL
深度剖析:MySQL聚合函数 count(expr) 如何工作?如何选择?
本文详细探讨了MySQL中count(expr)函数的不同形式及其执行效率,包括count(*)、count(1)、count(主键)、count(非主键)等。通过对InnoDB和MyISAM引擎的对比分析,解释了它们在不同场景下的实现原理及性能差异。文章还通过实例演示了事务隔离级别对统计结果的影响,并提供了源码分析和总结建议。适合希望深入了解MySQL统计函数的开发者阅读。
68 0
|
4月前
|
关系型数据库 MySQL
Mysql中count(1)、count(*)以及count(列)的区别
Mysql中count(1)、count(*)以及count(列)的区别
54 0
|
5月前
|
SQL 数据库 关系型数据库
MySQL设计规约问题之为什么统计表中记录数时推荐使用COUNT(*)而不是COUNT(primary_key)或COUNT(1)
MySQL设计规约问题之为什么统计表中记录数时推荐使用COUNT(*)而不是COUNT(primary_key)或COUNT(1)
|
6月前
|
关系型数据库 MySQL 开发者
Mysql COUNT() 函数详解
【6月更文挑战第19天】Mysql COUNT() 函数详解,包括 COUNT() 的用法及 COUNT() 带条件查询的操作
|
6月前
|
SQL 关系型数据库 MySQL
MySQL数据库——SQL优化(3/3)-limit 优化、count 优化、update 优化、SQL优化 小结
MySQL数据库——SQL优化(3/3)-limit 优化、count 优化、update 优化、SQL优化 小结
311 0
|
7月前
|
SQL 关系型数据库 MySQL
Mysql中count(*)和limit同时使用的问题
Mysql中count(*)和limit同时使用的问题
169 0
|
关系型数据库 MySQL
mysql统计数据表中同一字段不同状态的COUNT()语句
mysql统计数据表中同一字段不同状态的COUNT()语句
99 0