C语言之动态内存分配(1)

简介: 本章重点为什么存在动态内存分配动态内存函数的介绍mallocfreecallocrealloc常见的动态内存错误几个经典的笔试题柔性数组

动态内存管理—自己维护自己的内存空间的大小

首先我们申请一个变量,再申请一个数组

495e2d9911084fc0a90a27d11bb3329c.png

这是我们目前知道的向内存申请空间的一种方法


但是这两种申请空间大小的方法有一个问题就是他的内存大小是不能被改变的


那么我们今天就引入动态内存分配这个知识点


首先我们来看一下malloc这个函数


c89c75cdf6714e27bac242528e8551a3.png


Allocate memory block:开辟内存空间(块)


size_t size:size表示我要划分的字节,这40个字节有自己的起始位置,把起始位置的地址给你返回来,这40个字节的用途是不确定的,所以返回为void*,我们按照自己想要的类型进行强制类型转换,那么我们有没有申请空间的时候申请失败,,如果我的内存总共就8个G/16个G,所以一旦开辟失败就返回空指针(NULL)

现在我们来看代码(malloc函数如何使用)


#define CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int main()
{
  int arr[10] = { 0 };
  int* p = (int*)malloc(40);//我们拿一个整型指针接收,因为每加1就跳过一个整型,这样遍历我们每一个元素就会方便一些
  if (p == NULL)
  {
    printf("%s\n", strerror(errno));
    return 1;
  }
  int i = 0;
  for (i = 0; i < 10; i++)
  {
    *(p + i) = i;
  }
  for (i = 0; i < 10; i++)
  {
    printf("%d ", *(p + i));
  }
  return 0;
}

我们把void*强制类型转化为Int*,我们拿一个整型指针接收,因为每加1就跳过一个整型,这样遍历我们每一个元素就会方便一些


如果动态内存开辟失败我就返回1


这个地方没有free,并不是说内存空间就不回收了,当程序退出的时候,系统会自动回收内存空间


这个时候我们把free加上来看效果


#define CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int main()
{
  int arr[10] = { 0 };
  int* p = (int*)malloc(40);//我们拿一个整型指针接收,因为每加1就跳过一个整型,这样遍历我们每一个元素就会方便一些
  if (p == NULL)
  {
    printf("%s\n", strerror(errno));
    return 1;
  }
  int i = 0;
  for (i = 0; i < 10; i++)
  {
    *(p + i) = i;
  }
  for (i = 0; i < 10; i++)
  {
    printf("%d ", *(p + i));
  }
  free(p);
  return 0;
}

e86c928453b744c78d28c6217a7ace14.png


我在free(p)出添加一个断点,程序运行起来我们就直接走到了free(p)这个位置,我们把代码调试起来给大家看一看


7656ce2e258249f5b3e16487cb8416e3.png


我们按住F10调试起来走到断点处,打开调试,窗口,监视,随便选一个窗口进入


0ab9d77efd4a4400b8e5f1264d8935ea.png


这里我们为什么要输入p,10呢?是因为我们的p是一个指针,要加一个10才能访问到数组中的所有元素,我们在按F10走出free(p)就可以看到内存被释放了,但是p的值是没有变的


那既然有成功的案例,那我们来看一下动态内存开辟失败的案例,来看下面代码


INT_MAX表示的数字是非常的大的,没有这么大的空间供你使用,所以我们此时动态内粗开辟失败


90a6cf2f4656423faf900a82080d3c7a.png


常见的一些类型对应的数字表示范围的大小


#define MB_LEN_MAX    5             /* max. # bytes in multibyte char */
#define SHRT_MIN    (-32768)        /* minimum (signed) short value */
#define SHRT_MAX      32767         /* maximum (signed) short value */
#define USHRT_MAX     0xffff        /* maximum unsigned short value */
#define INT_MIN     (-2147483647 - 1) /* minimum (signed) int value */
#define INT_MAX       2147483647    /* maximum (signed) int value */
#define UINT_MAX      0xffffffff    /* maximum unsigned int value */
#define LONG_MIN    (-2147483647L - 1) /* minimum (signed) long value */
#define LONG_MAX      2147483647L   /* maximum (signed) long value */
#define ULONG_MAX     0xffffffffUL  /* maximum unsigned long value */
#define LLONG_MAX     9223372036854775807i64       /* maximum signed long long int value */
#define LLONG_MIN   (-9223372036854775807i64 - 1)  /* minimum signed long long int value */
#define ULLONG_MAX    0xffffffffffffffffui64       /* maximum unsigned long long int value */

对于下面这个代码我们画个图给大家在解释一下


  int arr[10] = { 0 };
  int* p = (int*)malloc(40);
  if (p == NULL)
  {
    printf("%s\n", strerror(errno));
    return 1;
  }

59003a97e66440658336845d96dfad9d.png


这里我们想一下我们前面讲到的野指针


free(p);
p = NULL;

malloc申请,free释放,我们暂时把p给释放了,但是p如果记得这个地址,那么p有朝一日能够找到这个内存区域,但是这个内存区域已经还给操作系统了,已经不属于我们了,这个时候我们把p拿起来去访问就成为了野指针,为了防止p成为空指针了,我们把它置为空,把他赋值为NULL,就好像是一条野狗,我们可以拿一根绳子把它拴在树上,希望大家能够理解


但是嫩你只顾申请但是不释放,这样就可能会导致内存泄漏的问题,给大家写一个死循环的开辟内存的代码


当然我的电脑比较落后一点,所有设施都稍微要落后一点,所以当时我运行起来就有一点卡,浏览器就被卡出去了,其实内存泄漏是非常危险的,感兴趣可以尝试一下,运行起来代码打开任务管理器可以发现他达到一定程度就会稳定下来,说明现代的电脑是非常聪明的


#include<stdio.h>
int main()
{
  while (1)
  {
    malloc(1);
  }
  return 0;
}

7aea95b843fd48aa83900ff1b4cc7e7c.png

本章终


 


相关文章
|
2月前
|
C语言 C++
C语言 之 内存函数
C语言 之 内存函数
40 3
|
20天前
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
32 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
20天前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
49 6
|
24天前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
42 6
|
1月前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
105 13
|
25天前
|
大数据 C语言
C 语言动态内存分配 —— 灵活掌控内存资源
C语言动态内存分配使程序在运行时灵活管理内存资源,通过malloc、calloc、realloc和free等函数实现内存的申请与释放,提高内存使用效率,适应不同应用场景需求。
|
1月前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
59 11
|
25天前
|
存储 算法 程序员
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。
|
1月前
|
存储 C语言 开发者
C 语言指针与内存管理
C语言中的指针与内存管理是编程的核心概念。指针用于存储变量的内存地址,实现数据的间接访问和操作;内存管理涉及动态分配(如malloc、free函数)和释放内存,确保程序高效运行并避免内存泄漏。掌握这两者对于编写高质量的C语言程序至关重要。
52 11
|
23天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
54 1