强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0

简介: 强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0

强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0

1、定义算法

相比于Q learning,DQN本质上是为了适应更为复杂的环境,并且经过不断的改良迭代,到了Nature DQN(即Volodymyr Mnih发表的Nature论文)这里才算是基本完善。DQN主要改动的点有三个:

  • 使用深度神经网络替代原来的Q表:这个很容易理解原因
  • 使用了经验回放(Replay Buffer):这个好处有很多,一个是使用一堆历史数据去训练,比之前用一次就扔掉好多了,大大提高样本效率,另外一个是面试常提到的,减少样本之间的相关性,原则上获取经验跟学习阶段是分开的,原来时序的训练数据有可能是不稳定的,打乱之后再学习有助于提高训练的稳定性,跟深度学习中划分训练测试集时打乱样本是一个道理。
  • 使用了两个网络:即策略网络和目标网络,每隔若干步才把每步更新的策略网络参数复制给目标网络,这样做也是为了训练的稳定,避免Q值的估计发散。想象一下,如果当前有个transition(这个Q learning中提过的,一定要记住!!!)样本导致对Q值进行了较差的过估计,如果接下来从经验回放中提取到的样本正好连续几个都这样的,很有可能导致Q值的发散(它的青春小鸟一去不回来了)。再打个比方,我们玩RPG或者闯关类游戏,有些人为了破纪录经常Save和Load,只要我出了错,我不满意我就加载之前的存档,假设不允许加载呢,就像DQN算法一样训练过程中会退不了,这时候是不是搞两个档,一个档每帧都存一下,另外一个档打了不错的结果再存,也就是若干个间隔再存一下,到最后用间隔若干步数再存的档一般都比每帧都存的档好些呢。当然你也可以再搞更多个档,也就是DQN增加多个目标网络,但是对于DQN则没有多大必要,多几个网络效果不见得会好很多。

1.1 定义模型

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
!pip uninstall -y parl
!pip install parl
import parl
from parl.algorithms import DQN

class MLP(parl.Model):
    """ Linear network to solve Cartpole problem.
    Args:
        input_dim (int): Dimension of observation space.
        output_dim (int): Dimension of action space.
    """

    def __init__(self, input_dim, output_dim):
        super(MLP, self).__init__()
        hidden_dim1 = 256
        hidden_dim2 = 256
        self.fc1 = nn.Linear(input_dim, hidden_dim1)
        self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)
        self.fc3 = nn.Linear(hidden_dim2, output_dim)

    def forward(self, state):
        x = F.relu(self.fc1(state))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

1.2 定义经验回放

from collections import deque
class ReplayBuffer:
    def __init__(self, capacity: int) -> None:
        self.capacity = capacity
        self.buffer = deque(maxlen=self.capacity)
    def push(self,transitions):
        '''_summary_
        Args:
            trainsitions (tuple): _description_
        '''
        self.buffer.append(transitions)
    def sample(self, batch_size: int, sequential: bool = False):
        if batch_size > len(self.buffer):
            batch_size = len(self.buffer)
        if sequential: # sequential sampling
            rand = random.randint(0, len(self.buffer) - batch_size)
            batch = [self.buffer[i] for i in range(rand, rand + batch_size)]
            return zip(*batch)
        else:
            batch = random.sample(self.buffer, batch_size)
            return zip(*batch)
    def clear(self):
        self.buffer.clear()
    def __len__(self):
        return len(self.buffer)

1.3 定义智能体

from random import random
import parl
import paddle
import math
import numpy as np


class DQNAgent(parl.Agent):
    """Agent of DQN.
    """

    def __init__(self, algorithm, memory,cfg):
        super(DQNAgent, self).__init__(algorithm)
        self.n_actions = cfg['n_actions']
        self.epsilon = cfg['epsilon_start']
        self.sample_count = 0  
        self.epsilon_start = cfg['epsilon_start']
        self.epsilon_end = cfg['epsilon_end']
        self.epsilon_decay = cfg['epsilon_decay']
        self.batch_size = cfg['batch_size']
        self.global_step = 0
        self.update_target_steps = 600
        self.memory = memory # replay buffer

    def sample_action(self, state):
        self.sample_count += 1
        # epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
        self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
            math.exp(-1. * self.sample_count / self.epsilon_decay) 
        if  random.random() < self.epsilon:
            action = np.random.randint(self.n_actions)
        else:
            action = self.predict_action(state)
        return action

    def predict_action(self, state):
        state = paddle.to_tensor(state , dtype='float32')
        q_values = self.alg.predict(state) # self.alg 是自带的算法
        action = q_values.argmax().numpy()[0]
        return action

    def update(self):
        """Update model with an episode data
        Args:
            obs(np.float32): shape of (batch_size, obs_dim)
            act(np.int32): shape of (batch_size)
            reward(np.float32): shape of (batch_size)
            next_obs(np.float32): shape of (batch_size, obs_dim)
            terminal(np.float32): shape of (batch_size)
        Returns:
            loss(float)
        """
        if len(self.memory) < self.batch_size: # when transitions in memory donot meet a batch, not update
            return

        if self.global_step % self.update_target_steps == 0:
            self.alg.sync_target()
        self.global_step += 1
        state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
            self.batch_size)
        action_batch = np.expand_dims(action_batch, axis=-1)
        reward_batch = np.expand_dims(reward_batch, axis=-1)
        done_batch = np.expand_dims(done_batch, axis=-1)

        state_batch = paddle.to_tensor(state_batch, dtype='float32')
        action_batch = paddle.to_tensor(action_batch, dtype='int32')
        reward_batch = paddle.to_tensor(reward_batch, dtype='float32')
        next_state_batch = paddle.to_tensor(next_state_batch, dtype='float32')
        done_batch = paddle.to_tensor(done_batch, dtype='float32')
        loss = self.alg.learn(state_batch, action_batch, reward_batch, next_state_batch, done_batch)

2. 定义训练

def train(cfg, env, agent):
    ''' 训练
    '''
    print(f"开始训练!")
    print(f"环境:{cfg['env_name']},算法:{cfg['algo_name']},设备:{cfg['device']}")
    rewards = []  # record rewards for all episodes
    steps = []
    for i_ep in range(cfg["train_eps"]):
        ep_reward = 0  # reward per episode
        ep_step = 0
        state = env.reset()  # reset and obtain initial state
        for _ in range(cfg['ep_max_steps']):
            ep_step += 1
            action = agent.sample_action(state)  # sample action
            next_state, reward, done, _ = env.step(action)  # update env and return transitions
            agent.memory.push((state, action, reward,next_state, done))  # save transitions
            state = next_state  # update next state for env
            agent.update()  # update agent
            ep_reward += reward  #
            if done:
                break
        steps.append(ep_step)
        rewards.append(ep_reward)
        if (i_ep + 1) % 10 == 0:
            print(f"回合:{i_ep+1}/{cfg['train_eps']},奖励:{ep_reward:.2f},Epislon: {agent.epsilon:.3f}")
    print("完成训练!")
    env.close()
    res_dic = {
   
   'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
    return res_dic

def test(cfg, env, agent):
    print("开始测试!")
    print(f"环境:{cfg['env_name']},算法:{cfg['algo_name']},设备:{cfg['device']}")
    rewards = []  # record rewards for all episodes
    steps = []
    for i_ep in range(cfg['test_eps']):
        ep_reward = 0  # reward per episode
        ep_step = 0
        state = env.reset()  # reset and obtain initial state
        for _ in range(cfg['ep_max_steps']):
            ep_step+=1
            action = agent.predict_action(state)  # predict action
            next_state, reward, done, _ = env.step(action)  
            state = next_state  
            ep_reward += reward 
            if done:
                break
        steps.append(ep_step)
        rewards.append(ep_reward)
        print(f"回合:{i_ep+1}/{cfg['test_eps']},奖励:{ep_reward:.2f}")
    print("完成测试!")
    env.close()
    return {
   
   'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}

3、定义环境

OpenAI Gym中其实集成了很多强化学习环境,足够大家学习了,但是在做强化学习的应用中免不了要自己创建环境,比如在本项目中其实不太好找到Qlearning能学出来的环境,Qlearning实在是太弱了,需要足够简单的环境才行,因此本项目写了一个环境,大家感兴趣的话可以看一下,一般环境接口最关键的部分即使reset和step。

import gym
import paddle
import numpy as np
import random
import os
from parl.algorithms import DQN
def all_seed(env,seed = 1):
    ''' omnipotent seed for RL, attention the position of seed function, you'd better put it just following the env create function
    Args:
        env (_type_): 
        seed (int, optional): _description_. Defaults to 1.
    '''
    print(f"seed = {seed}")
    env.seed(seed) # env config
    np.random.seed(seed)
    random.seed(seed)
    paddle.seed(seed)

def env_agent_config(cfg):
    ''' create env and agent
    '''
    env = gym.make(cfg['env_name']) 
    if cfg['seed'] !=0: # set random seed
        all_seed(env,seed=cfg["seed"]) 
    n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'n'))
    n_actions = env.action_space.n  # action dimension
    print(f"n_states: {n_states}, n_actions: {n_actions}")
    cfg.update({
   
   "n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
    model = MLP(n_states,n_actions)
    algo = DQN(model, gamma=cfg['gamma'], lr=cfg['lr'])
    memory =  ReplayBuffer(cfg["memory_capacity"]) # replay buffer
    agent = DQNAgent(algo,memory,cfg)  # create agent
    return env, agent

4、设置参数

到这里所有qlearning模块就算完成了,下面需要设置一些参数,方便大家“炼丹”,其中默认的是笔者已经调好的~。另外为了定义了一个画图函数,用来描述奖励的变化。

import argparse
import seaborn as sns
import matplotlib.pyplot as plt
def get_args():
    """ 
    """
    parser = argparse.ArgumentParser(description="hyperparameters")      
    parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
    parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
    parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") # 训练的回合数
    parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") # 测试的回合数
    parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
    parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") # 折扣因子
    parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") #  e-greedy策略中初始epsilon
    parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") # e-greedy策略中的终止epsilon
    parser.add_argument('--epsilon_decay',default=200,type=int,help="decay rate of epsilon") # e-greedy策略中epsilon的衰减率
    parser.add_argument('--memory_capacity',default=200000,type=int) # replay memory的容量
    parser.add_argument('--memory_warmup_size',default=200,type=int) # replay memory的预热容量
    parser.add_argument('--batch_size',default=64,type=int,help="batch size of training") # 训练时每次使用的样本数
    parser.add_argument('--targe_update_fre',default=200,type=int,help="frequency of target network update") # target network更新频率
    parser.add_argument('--seed',default=10,type=int,help="seed") 
    parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
    parser.add_argument('--device',default='cpu',type=str,help="cpu or gpu")  
    args = parser.parse_args([])                
    args = {
   
   **vars(args)}  # type(dict)         
    return args
def smooth(data, weight=0.9):  
    '''用于平滑曲线,类似于Tensorboard中的smooth

    Args:
        data (List):输入数据
        weight (Float): 平滑权重,处于0-1之间,数值越高说明越平滑,一般取0.9

    Returns:
        smoothed (List): 平滑后的数据
    '''
    last = data[0]  # First value in the plot (first timestep)
    smoothed = list()
    for point in data:
        smoothed_val = last * weight + (1 - weight) * point  # 计算平滑值
        smoothed.append(smoothed_val)                    
        last = smoothed_val                                
    return smoothed

def plot_rewards(rewards,cfg,path=None,tag='train'):
    sns.set()
    plt.figure()  # 创建一个图形实例,方便同时多画几个图
    plt.title(f"{tag}ing curve on {cfg['device']} of {cfg['algo_name']} for {cfg['env_name']}")
    plt.xlabel('epsiodes')
    plt.plot(rewards, label='rewards')
    plt.plot(smooth(rewards), label='smoothed')
    plt.legend()

5、训练

# 获取参数
cfg = get_args() 
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)

plot_rewards(res_dic['rewards'], cfg, tag="train")  
# 测试
res_dic = test(cfg, env, agent)
plot_rewards(res_dic['rewards'], cfg, tag="test")  # 画出结果
seed = 10
n_states: 4, n_actions: 2
开始训练!
环境:CartPole-v0,算法:DQN,设备:cpu
回合:10/200,奖励:10.00,Epislon: 0.062
回合:20/200,奖励:85.00,Epislon: 0.014
回合:30/200,奖励:41.00,Epislon: 0.011
回合:40/200,奖励:31.00,Epislon: 0.010
回合:50/200,奖励:22.00,Epislon: 0.010
回合:60/200,奖励:10.00,Epislon: 0.010
回合:70/200,奖励:10.00,Epislon: 0.010
回合:80/200,奖励:22.00,Epislon: 0.010
回合:90/200,奖励:30.00,Epislon: 0.010
回合:100/200,奖励:20.00,Epislon: 0.010
回合:110/200,奖励:15.00,Epislon: 0.010
回合:120/200,奖励:45.00,Epislon: 0.010
回合:130/200,奖励:73.00,Epislon: 0.010
回合:140/200,奖励:180.00,Epislon: 0.010
回合:150/200,奖励:167.00,Epislon: 0.010
回合:160/200,奖励:200.00,Epislon: 0.010
回合:170/200,奖励:165.00,Epislon: 0.010
回合:180/200,奖励:200.00,Epislon: 0.010
回合:190/200,奖励:200.00,Epislon: 0.010

更多优质内容请关注公号:汀丶人工智能

相关文章
|
5天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
33 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
11天前
|
运维 供应链 安全
阿里云先知安全沙龙(武汉站) - 网络空间安全中的红蓝对抗实践
网络空间安全中的红蓝对抗场景通过模拟真实的攻防演练,帮助国家关键基础设施单位提升安全水平。具体案例包括快递单位、航空公司、一线城市及智能汽车品牌等,在演练中发现潜在攻击路径,有效识别和防范风险,确保系统稳定运行。演练涵盖情报收集、无差别攻击、针对性打击、稳固据点、横向渗透和控制目标等关键步骤,全面提升防护能力。
|
1月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
173 30
|
13天前
|
存储 监控 安全
网络安全视角:从地域到账号的阿里云日志审计实践
日志审计的必要性在于其能够帮助企业和组织落实法律要求,打破信息孤岛和应对安全威胁。选择 SLS 下日志审计应用,一方面是选择国家网络安全专用认证的日志分析产品,另一方面可以快速帮助大型公司统一管理多组地域、多个账号的日志数据。除了在日志服务中存储、查看和分析日志外,还可通过报表分析和告警配置,主动发现潜在的安全威胁,增强云上资产安全。
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
120 7
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
350 7
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
2月前
|
云安全 监控 安全
云计算环境下的网络安全策略与实践
在数字化时代,云计算已成为企业和个人存储、处理数据的重要方式。然而,随着云服务的普及,网络安全问题也日益凸显。本文将探讨如何在云计算环境中实施有效的网络安全措施,包括加密技术、访问控制、安全监控和应急响应计划等方面。我们将通过具体案例分析,展示如何在实际场景中应用这些策略,以保护云中的数据不受威胁。
|
23天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
61 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章