人工智能入门指南:Web 开发者版 (4)机器学习算法与实践

简介: 本节将介绍常用的机器学习算法及其实践应用。我们将涵盖监督学习算法、无监督学习算法以及模型调优与性能优化等内容。

A. 监督学习算法

监督学习是一种通过使用带有标签的训练数据来训练模型,以预测新样本标签的方法。下面介绍几种常用的监督学习算法。

1. 线性回归

线性回归是一种用于建立线性关系的监督学习算法,它通过拟合线性模型来预测连续型目标变量。

示例 1: 线性回归模型训练与预测


from sklearn.linear_model import LinearRegression

# 创建特征矩阵和目标向量
X = [[1], [2], [3], [4]]
y = [2, 4, 6, 8]

# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X, y)

# 预测新样本
new_sample = [[5]]
prediction = model.predict(new_sample)

# 打印预测结果
print("预测结果:", prediction)

2. 逻辑回归

逻辑回归是一种用于建立二分类模型的监督学习算法,它通过拟合逻辑函数来预测样本所属的类别。

示例 2: 逻辑回归模型训练与预测


from sklearn.linear_model import LogisticRegression

# 创建特征矩阵和目标向量
X = [[1], [2], [3], [4]]
y = [0, 0, 1, 1]

# 创建逻辑回归模型
model = LogisticRegression()

# 训练模型
model.fit(X, y)

# 预测新样本
new_sample = [[5]]
prediction = model.predict(new_sample)

# 打印预测结果
print("预测结果:", prediction)

3. 决策树与随机森林

决策树是一种通过树状结构进行决策的监督学习算法,随机森林是基于多个决策树的集成学习方法。

示例 3: 随机森林模型训练与预测

from sklearn.ensemble import RandomForestClassifier

# 创建特征矩阵和目标向量
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [0, 1, 0, 1]

# 创建随机森林分类器
model = RandomForestClassifier()

# 训练模型
model.fit(X, y)

# 预测新样本
new_sample = [[2, 3]]
prediction = model.predict(new_sample)

# 打印预测结果
print("预测结果:", prediction)

4. 支持向量机

支持向量机是一种用于分类和回归的监督学习算法,它通过寻找最优超平面来进行样本的分类。

示例 4: 支持向量机模型训练与预测

from sklearn.svm import SVC

# 创建特征矩阵和目标向量
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [0, 1, 0, 1]

# 创建支持向量机分类器
model = SVC()

# 训练模型
model.fit(X, y)

# 预测新样本
new_sample = [[2, 3]]
prediction = model.predict(new_sample)

# 打印预测结果
print("预测结果:", prediction)

5. K近邻算法

K近邻算法是一种基于样本距离的监督学习算法,它通过寻找最近的K个邻居来进行样本的分类或回归。

示例 5: K近邻算法模型训练与预测

from sklearn.neighbors import KNeighborsClassifier

# 创建特征矩阵和目标向量
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [0, 1, 0, 1]

# 创建K近邻分类器
model = KNeighborsClassifier()

# 训练模型
model.fit(X, y)

# 预测新样本
new_sample = [[2, 3]]
prediction = model.predict(new_sample)

# 打印预测结果
print("预测结果:", prediction)

B. 无监督学习算法

无监督学习是一种使用未标记的训练数据来训练模型的方法,下面介绍几种常用的无监督学习算法。

1. 聚类算法

聚类算法是一种将数据集划分为若干组相似数据的无监督学习算法。

示例 6: K均值聚类算法

from sklearn.cluster import KMeans

# 创建特征矩阵
X = [[1], [2], [4], [5], [7], [8]]

# 创建K均值聚类器
model = KMeans(n_clusters=2)

# 训练模型
model.fit(X)

# 预测样本所属的簇
prediction = model.predict([[3], [6]])

# 打印预测结果
print("预测结果:", prediction)

2. 主成分分析

主成分分析是一种通过线性变换将原始特征映射到新的特征空间的无监督学习算法,以提取数据的主要特征。

示例 7: 主成分分析


from sklearn.decomposition import PCA

# 创建特征矩阵
X = [[1, 2], [3, 4], [5, 6], [7, 8]]

# 创建主成分分析对象
pca = PCA(n_components=1)

# 进行主成分分析
X_new = pca.fit_transform(X)

# 打印降维后的特征矩阵
print("降维后的特征矩阵:", X_new)

C. 模型调优与性能优化

模型调优与性能优化是机器学习中重要的步骤,它们旨在提高模型的预测能力和泛化能力。

在本节中,我们将介绍模型调优的一些常见技术,如网格搜索和交叉验证。

1. 网格搜索

网格搜索是一种通过遍历指定参数的所有可能组合来找到最佳模型参数的方法。

示例 8: 网格搜索

from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC

# 创建特征矩阵和目标向量
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [0, 1, 0, 1]

# 创建支持向量机分类器
model = SVC()

# 定义参数网格
param_grid = {
   'C': [1, 10, 100], 'gamma': [0.1, 1, 10]}

# 创建网格搜索对象
grid_search = GridSearchCV(model, param_grid)

# 执行网格搜索
grid_search.fit(X, y)

# 打印最佳模型参数
print("最佳模型参数:", grid_search.best_params_)

2. 交叉验证

交叉验证是一种通过将数据集划分为多个子集来评估模型性能的方法,以更准确地估计模型的泛化能力。

示例 9: K折交叉验证


from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression

# 创建特征矩阵和目标向量
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [0, 1, 0, 1]

# 创建逻辑回归模型
model = LogisticRegression()

# 执行K折交叉验证
scores = cross_val_score(model, X, y, cv=3)

# 打印交叉验证得分
print("交叉验证得分:", scores)

以上是关于机器学习算法与实践的介绍。下一节将介绍深度学习的基础概念及其在人工智能中的应用。

目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
6天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
26天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
9天前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
27 0
|
14天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
XML JSON API
ServiceStack:不仅仅是一个高性能Web API和微服务框架,更是一站式解决方案——深入解析其多协议支持及简便开发流程,带您体验前所未有的.NET开发效率革命
【10月更文挑战第9天】ServiceStack 是一个高性能的 Web API 和微服务框架,支持 JSON、XML、CSV 等多种数据格式。它简化了 .NET 应用的开发流程,提供了直观的 RESTful 服务构建方式。ServiceStack 支持高并发请求和复杂业务逻辑,安装简单,通过 NuGet 包管理器即可快速集成。示例代码展示了如何创建一个返回当前日期的简单服务,包括定义请求和响应 DTO、实现服务逻辑、配置路由和宿主。ServiceStack 还支持 WebSocket、SignalR 等实时通信协议,具备自动验证、自动过滤器等丰富功能,适合快速搭建高性能、可扩展的服务端应用。
101 3
|
16天前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
103 45