全面解析 vue3.0 diff算法

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 彻底弄清楚 diff 算法

前言:随之vue3.0beta版本的发布,vue3.0正式版本相信不久就会与我们相遇。尤玉溪在直播中也说了vue3.0的新特性typescript强烈支持,proxy响应式原理,重新虚拟dom,优化diff算法性能提升等等。小编在这里仔细研究了vue3.0beta版本diff算法的源码,并希望把其中的细节和奥妙和大家一起分享。

在这里插入图片描述
首先我们来思考一些大中厂面试中,很容易问到的问题:

1 什么时候用到diff算法,diff算法作用域在哪里?
2 diff算法是怎么运作的,到底有什么作用?
3 在v-for 循环列表 key 的作用是什么
4 用索引index做key真的有用? 到底用什么做key才是最佳方案。

如果遇到这些问题,大家是怎么回答的呢?我相信当你读完这篇文章,这些问题也会迎刃而解。

一 什么时候用到了diff算法,diff算法作用域?

1.1diff算法的作用域

patch概念引入

在vue update过程中在遍历子代vnode的过程中,会用不同的patch方法来patch新老vnode,如果找到对应的 newVnode 和 oldVnode,就可以复用利用里面的真实dom节点。避免了重复创建元素带来的性能开销。毕竟浏览器创造真实的dom,操纵真实的dom,性能代价是昂贵的。

patch过程中,如果面对当前vnode存在有很多chidren的情况,那么需要分别遍历patch新的children Vnode和老的 children vnode。

存在chidren的vnode类型

首先思考一下什么类型的vnode会存在children。

①element元素类型vnode

第一中情况就是element类型vnode 会存在 children vode,此时的三个span标签就是chidren vnode情况

<div>
   <span> 苹果🍎 </span> 
   <span> 香蕉🍌 </span>
   <span> 鸭梨🍐 </span>
</div>

在vue3.0源码中 ,patchElement用于处理element类型的vnode

②flagment碎片类型vnode

在Vue3.0中,引入了一个fragment碎片概念。
你可能会问,什么是碎片?如果你创建一个Vue组件,那么它只能有一个根节点。

<template>
   <span> 苹果🍎 </span> 
   <span> 香蕉🍌 </span>
   <span> 鸭梨🍐 </span>
</template>

这样可能会报出警告,原因是代表任何Vue组件的Vue实例需要绑定到一个单一的DOM元素中。唯一可以创建一个具有多个DOM节点的组件的方法就是创建一个没有底层Vue实例的功能组件。

flagment出现就是用看起来像一个普通的DOM元素,但它是虚拟的,根本不会在DOM树中呈现。这样我们可以将组件功能绑定到一个单一的元素中,而不需要创建一个多余的DOM节点。

 <Fragment>
   <span> 苹果🍎 </span> 
   <span> 香蕉🍌 </span>
   <span> 鸭梨🍐 </span>
</Fragment>

在vue3.0源码中 ,processFragment用于处理Fragment类型的vnode

1.2 patchChildren

从上文中我们得知了存在children的vnode类型,那么存在children就需要patch每一个
children vnode依次向下遍历。那么就需要一个patchChildren方法,依次patch子类vnode。

patchChildren

vue3.0中 在patchChildren方法中有这么一段源码

if (patchFlag > 0) {
   
   
      if (patchFlag & PatchFlags.KEYED_FRAGMENT) {
   
    
         /* 对于存在key的情况用于diff算法 */
        patchKeyedChildren(
          c1 as VNode[],
          c2 as VNodeArrayChildren,
          container,
          anchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
        return
      } else if (patchFlag & PatchFlags.UNKEYED_FRAGMENT) {
   
   
         /* 对于不存在key的情况,直接patch  */
        patchUnkeyedChildren( 
          c1 as VNode[],
          c2 as VNodeArrayChildren,
          container,
          anchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
        return
      }
    }

patchChildren根据是否存在key进行真正的diff或者直接patch。

既然diff算法存在patchChildren方法中,而patchChildren方法用在Fragment类型和element类型的vnode中,这样也就解释了diff算法的作用域是什么。

1.3 diff算法作用?

通过前言我们知道,存在这children的情况的vnode,需要通过patchChildren遍历children依次进行patch操作,如果在patch期间,再发现存在vnode情况,那么会递归的方式依次向下patch,那么找到与新的vnode对应的vnode显的如此重要。

我们用两幅图来向大家展示vnode变化。

在这里插入图片描述
在这里插入图片描述
如上两幅图表示在一次更新中新老dom树变化情况。

假设不存在diff算法,依次按照先后顺序patch会发生什么

如果不存在diff算法,而是直接patchchildren 就会出现如下图的逻辑。

在这里插入图片描述

第一次patchChidren
在这里插入图片描述
第二次patchChidren
在这里插入图片描述
第三次patchChidren
在这里插入图片描述

第四次patchChidren

在这里插入图片描述
如果没有用到diff算法,而是依次patch虚拟dom树,那么如上稍微修改dom顺序,就会在patch过程中没有一对正确的新老vnode,所以老vnode的节点没有一个可以复用,这样就需要重新创造新的节点,浪费了性能开销,这显然不是我们需要的。

那么diff算法的作用就来了。

diff作用就是在patch子vnode过程中,找到与新vnode对应的老vnode,复用真实的dom节点,避免不必要的性能开销

二 diff算法具体做了什么(重点)?

在正式讲diff算法之前,在patchChildren的过程中,存在 patchKeyedChildren
patchUnkeyedChildren

patchKeyedChildren 是正式的开启diff的流程,那么patchUnkeyedChildren的作用是什么呢? 我们来看看针对没有key的情况patchUnkeyedChildren会做什么。


 c1 = c1 || EMPTY_ARR
    c2 = c2 || EMPTY_ARR
    const oldLength = c1.length
    const newLength = c2.length
    const commonLength = Math.min(oldLength, newLength)
    let i
    for (i = 0; i < commonLength; i++) {
   
    /* 依次遍历新老vnode进行patch */
      const nextChild = (c2[i] = optimized
        ? cloneIfMounted(c2[i] as VNode)
        : normalizeVNode(c2[i]))
      patch(
        c1[i],
        nextChild,
        container,
        null,
        parentComponent,
        parentSuspense,
        isSVG,
        optimized
      )
    }
    if (oldLength > newLength) {
   
    /* 老vnode 数量大于新的vnode,删除多余的节点 */
      unmountChildren(c1, parentComponent, parentSuspense, true, commonLength)
    } else {
   
    /* /* 老vnode 数量小于于新的vnode,创造新的即诶安 */
      mountChildren(
        c2,
        container,
        anchor,
        parentComponent,
        parentSuspense,
        isSVG,
        optimized,
        commonLength
      )
    }

我们可以得到结论,对于不存在key情况
① 比较新老children的length获取最小值 然后对于公共部分,进行从新patch工作。
② 如果老节点数量大于新的节点数量 ,移除多出来的节点。
③ 如果新的节点数量大于老节点的数量,从新 mountChildren新增的节点。

那么对于存在key情况呢? 会用到diff算法 , diff算法做了什么呢?

patchKeyedChildren方法究竟做了什么?
我们先来看看一些声明的变量。

    /*  c1 老的vnode c2 新的vnode  */
    let i = 0              /* 记录索引 */
    const l2 = c2.length   /* 新vnode的数量 */
    let e1 = c1.length - 1 /* 老vnode 最后一个节点的索引 */
    let e2 = l2 - 1        /* 新节点最后一个节点的索引 */

①第一步从头开始向尾寻找

(a b) c
(a b) d e

 /* 从头对比找到有相同的节点 patch ,发现不同,立即跳出*/
    while (i <= e1 && i <= e2) {
   
   
      const n1 = c1[i]
      const n2 = (c2[i] = optimized
        ? cloneIfMounted(c2[i] as VNode)
        : normalizeVNode(c2[i]))
        /* 判断key ,type是否相等 */
      if (isSameVNodeType(n1, n2)) {
   
   
        patch(
          n1,
          n2,
          container, 
          parentAnchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
      } else {
   
   
        break
      }
      i++
    }

第一步的事情就是从头开始寻找相同的vnode,然后进行patch,如果发现不是相同的节点,那么立即跳出循环。

具体流程如图所示
在这里插入图片描述

isSameVNodeType

export function isSameVNodeType(n1: VNode, n2: VNode): boolean {
   
   
  return n1.type === n2.type && n1.key === n2.key
}

isSameVNodeType 作用就是判断当前vnode类型 和 vnode的 key是否相等

②第二步从尾开始同前diff

a (b c)
d e (b c)

 /* 如果第一步没有patch完,立即,从后往前开始patch ,如果发现不同立即跳出循环 */
    while (i <= e1 && i <= e2) {
   
   
      const n1 = c1[e1]
      const n2 = (c2[e2] = optimized
        ? cloneIfMounted(c2[e2] as VNode)
        : normalizeVNode(c2[e2]))
      if (isSameVNodeType(n1, n2)) {
   
   
        patch(
          n1,
          n2,
          container,
          parentAnchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
      } else {
   
   
        break
      }
      e1--
      e2--
    }

经历第一步操作之后,如果发现没有patch完,那么立即进行第二部,从尾部开始遍历依次向前diff。

如果发现不是相同的节点,那么立即跳出循环。

具体流程如图所示
在这里插入图片描述

③④主要针对新增和删除元素的情况,前提是元素没有发生移动, 如果有元素发生移动就要走⑤逻辑。

③ 如果老节点是否全部patch,新节点没有被patch完,创建新的vnode

(a b)
(a b) c
i = 2, e1 = 1, e2 = 2
(a b)
c (a b)
i = 0, e1 = -1, e2 = 0

/* 如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode  ) */
    if (i > e1) {
   
   
      if (i <= e2) {
   
   
        const nextPos = e2 + 1
        const anchor = nextPos < l2 ? (c2[nextPos] as VNode).el : parentAnchor
        while (i <= e2) {
   
   
          patch( /* 创建新的节点*/
            null,
            (c2[i] = optimized
              ? cloneIfMounted(c2[i] as VNode)
              : normalizeVNode(c2[i])),
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG
          )
          i++
        }
      }
    }

i > e1

如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode ),也就是要全部create新的vnode.

具体逻辑如图所示
在这里插入图片描述

④ 如果新节点全部被patch,老节点有剩余,那么卸载所有老节点

i > e2

(a b) c

(a b)

i = 2, e1 = 2, e2 = 1

a (b c)

(b c)

i = 0, e1 = 0, e2 = -1

else if (i > e2) {
   
   
   while (i <= e1) {
   
   
      unmount(c1[i], parentComponent, parentSuspense, true)
      i++
   }
}

对于老的节点大于新的节点的情况 ,对于超出的节点全部卸载 ( 这种情况说明已经patch完相同的vnode )

具体逻辑如图所示
在这里插入图片描述

⑤ 不确定的元素 ( 这种情况说明没有patch完相同的vnode ),我们可以接着①②的逻辑继续往下看

diff核心

在①②情况下没有遍历完的节点如下图所示。
在这里插入图片描述

剩下的节点。
在这里插入图片描述

      const s1 = i  //第一步遍历到的index
      const s2 = i 
      const keyToNewIndexMap: Map<string | number, number> = new Map()
      /* 把没有比较过的新的vnode节点,通过map保存 */
      for (i = s2; i <= e2; i++) {
   
   
        if (nextChild.key != null) {
   
   
          keyToNewIndexMap.set(nextChild.key, i)
        }
      }
      let j
      let patched = 0 
      const toBePatched = e2 - s2 + 1 /* 没有经过 path 新的节点的数量 */
      let moved = false /* 证明是否 */
      let maxNewIndexSoFar = 0 
      const newIndexToOldIndexMap = new Array(toBePatched)
       for (i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0
      /* 建立一个数组,每个子元素都是0 [ 0, 0, 0, 0, 0, 0, ] */

遍历所有新节点把索引和对应的key,存入map keyToNewIndexMap中

keyToNewIndexMap 存放 key -> index 的map

D : 2
E : 3
C : 4
I : 5

接下来声明一个新的指针 j,记录剩下新的节点的索引。
patched ,记录在第⑤步patched新节点过的数量
toBePatched 记录⑤步之前,没有经过patched 新的节点的数量。
moved代表是否发生过移动,咱们的demo是已经发生过移动的。

newIndexToOldIndexMap 用来存放新节点索引和老节点索引的数组。
newIndexToOldIndexMap 数组的index是新vnode的索引 , value是老vnode的索引。

接下来

 for (i = s1; i <= e1; i++) {
   
    /* 开始遍历老节点 */
        const prevChild = c1[i]
        if (patched >= toBePatched) {
   
    /* 已经patch数量大于等于, */
          /* ① 如果 toBePatched新的节点数量为0 ,那么统一卸载老的节点 */
          unmount(prevChild, parentComponent, parentSuspense, true)
          continue
        }
        let newIndex
         /* ② 如果,老节点的key存在 ,通过key找到对应的index */
        if (prevChild.key != null) {
   
   
          newIndex = keyToNewIndexMap.get(prevChild.key)
        } else {
   
    /*  ③ 如果,老节点的key不存在 */
          for (j = s2; j <= e2; j++) {
   
    /* 遍历剩下的所有新节点 */
            if (
              newIndexToOldIndexMap[j - s2] === 0 && /* newIndexToOldIndexMap[j - s2] === 0 新节点没有被patch */
              isSameVNodeType(prevChild, c2[j] as VNode)
            ) {
   
    /* 如果找到与当前老节点对应的新节点那么 ,将新节点的索引,赋值给newIndex  */
              newIndex = j
              break
            }
          }
        }
        if (newIndex === undefined) {
   
    /* ①没有找到与老节点对应的新节点,删除当前节点,卸载所有的节点 */
          unmount(prevChild, parentComponent, parentSuspense, true)
        } else {
   
   
          /* ②把老节点的索引,记录在存放新节点的数组中, */
          newIndexToOldIndexMap[newIndex - s2] = i + 1
          if (newIndex >= maxNewIndexSoFar) {
   
   
            maxNewIndexSoFar = newIndex
          } else {
   
   
            /* 证明有节点已经移动了   */
            moved = true
          }
          /* 找到新的节点进行patch节点 */
          patch(
            prevChild,
            c2[newIndex] as VNode,
            container,
            null,
            parentComponent,
            parentSuspense,
            isSVG,
            optimized
          )
          patched++
        }
 }

这段代码算是diff算法的核心。

第一步: 通过老节点的key找到对应新节点的index:开始遍历老的节点,判断有没有key, 如果存在key通过新节点的keyToNewIndexMap找到与新节点index,如果不存在key那么会遍历剩下来的新节点试图找到对应index。

第二步:如果存在index证明有对应的老节点,那么直接复用老节点进行patch,没有找到与老节点对应的新节点,删除当前老节点。

第三步:newIndexToOldIndexMap找到对应新老节点关系。

到这里,我们patch了一遍,把所有的老vnode都patch了一遍。

如图所示
在这里插入图片描述
但是接下来的问题。

1 虽然已经patch过所有的老节点。可以对于已经发生移动的节点,要怎么真正移动dom元素。
2 对于新增的节点,(图中节点I)并没有处理,应该怎么处理。

      /*移动老节点创建新节点*/
     /* 根据最长稳定序列移动相对应的节点 */
      const increasingNewIndexSequence = moved
        ? getSequence(newIndexToOldIndexMap)
        : EMPTY_ARR
      j = increasingNewIndexSequence.length - 1
      for (i = toBePatched - 1; i >= 0; i--) {
   
   
        const nextIndex = s2 + i
        const nextChild = c2[nextIndex] as VNode
        const anchor =
          nextIndex + 1 < l2 ? (c2[nextIndex + 1] as VNode).el : parentAnchor
        if (newIndexToOldIndexMap[i] === 0) {
   
    /* 没有老的节点与新的节点对应,则创建一个新的vnode */
          patch(
            null,
            nextChild,
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG
          )
        } else if (moved) {
   
   
          if (j < 0 || i !== increasingNewIndexSequence[j]) {
   
    /*如果没有在长*/
            /* 需要移动的vnode */
            move(nextChild, container, anchor, MoveType.REORDER)
          } else {
   
   
            j--
          }

⑥最长稳定序列

首选通过getSequence得到一个最长稳定序列,对于index === 0 的情况也就是新增节点(图中I) 需要从新mount一个新的vnode,然后对于发生移动的节点进行统一的移动操作

什么叫做最长稳定序列

对于以下的原始序列
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15
最长递增子序列为
0, 2, 6, 9, 11, 15.

为什么要得到最长稳定序列

因为我们需要一个序列作为基础的参照序列,其他未在稳定序列的节点,进行移动。

总结

经过上述我们大致知道了diff算法的流程

1 从头对比找到有相同的节点 patch ,发现不同,立即跳出。

2如果第一步没有patch完,立即,从后往前开始patch ,如果发现不同立即跳出循环。

3如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode )。

4 对于老的节点大于新的节点的情况 , 对于超出的节点全部卸载 ( 这种情况说明已经patch完相同的vnode )。

5不确定的元素( 这种情况说明没有patch完相同的vnode ) 与 3 ,4对立关系。

1 把没有比较过的新的vnode节点,通过map保存
记录已经patch的新节点的数量 patched
没有经过 path 新的节点的数量 toBePatched
建立一个数组newIndexToOldIndexMap,每个子元素都是[ 0, 0, 0, 0, 0, 0, ] 里面的数字记录老节点的索引 ,数组索引就是新节点的索引

开始遍历老节点

① 如果 toBePatched新的节点数量为0 ,那么统一卸载老的节点.

② 如果,老节点的key存在 ,通过key找到对应的index

③ 如果,老节点的key不存在
1 遍历剩下的所有新节点
2 如果找到与当前老节点对应的新节点那么 ,将新节点的索引,赋值给newIndex

④ 没有找到与老节点对应的新节点,卸载当前老节点。

⑤ 如果找到与老节点对应的新节点,把老节点的索引,记录在存放新节点的数组中,
1 如果节点发生移动 记录已经移动了
2 patch新老节点 找到新的节点进行patch节点
遍历结束

如果发生移动

① 根据 newIndexToOldIndexMap 新老节点索引列表找到最长稳定序列
② 对于 newIndexToOldIndexMap -item =0 证明不存在老节点 ,从新形成新的vnode 
③ 对于发生移动的节点进行移动处理。 

三 key的作用,如何正确key。

1key的作用

在我们上述diff算法中,通过isSameVNodeType方法判断,来判断key是否相等判断新老节点。
那么由此我们可以总结出?

在v-for循环中,key的作用是:通过判断newVnode和OldVnode的key是否相等,从而复用与新节点对应的老节点,节约性能的开销。

2如何正确使用key

①错误用法 1:用index做key。

用index做key的效果实际和没有用diff算法是一样的,为什么这么说呢,下面我就用一幅图来说明:

在这里插入图片描述

如果所示当我们用index作为key的时候,无论我们怎么样移动删除节点,到了diff算法中都会从头到尾依次patch(图中:所有节点均未有效的复用)

②错误用法2 :用index拼接其他值作为key。

当已用index拼接其他值作为索引的时候,因为每一个节点都找不到对应的key,导致所有的节点都不能复用,所有的新vnode都需要重新创建。都需要重新create

如图所示。
在这里插入图片描述

③正确用法 :用唯一值id做key(我们可以用前后端交互的数据源的id为key)。

如图所示。每一个节点都做到了复用。起到了diff算法的真正作用。

在这里插入图片描述

四 总结

我们在上面,已经把刚开始的问题统统解决了,最后用一张思维脑图来从新整理一下整个流程。diff算法,你学会了吗?
在这里插入图片描述

相关文章
|
25天前
|
存储 算法 安全
.NET 平台 SM2 国密算法 License 证书生成深度解析
授权证书文件的后缀通常取决于其编码格式和具体用途。本文档通过一个示例程序展示了如何在 .NET 平台上使用国密 SM2 算法生成和验证许可证(License)文件。该示例不仅详细演示了 SM2 国密算法的实际应用场景,还提供了关于如何高效处理大规模许可证文件生成任务的技术参考。通过对不同并发策略的性能测试,开发者可以更好地理解如何优化许可证生成流程,以满足高并发和大数据量的需求。 希望这段描述更清晰地传达了程序的功能和技术亮点。
103 13
.NET 平台 SM2 国密算法 License 证书生成深度解析
|
4天前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
14天前
|
存储 监控 算法
关于员工上网监控系统中 PHP 关联数组算法的学术解析
在当代企业管理中,员工上网监控系统是维护信息安全和提升工作效率的关键工具。PHP 中的关联数组凭借其灵活的键值对存储方式,在记录员工网络活动、管理访问规则及分析上网行为等方面发挥重要作用。通过关联数组,系统能高效记录每位员工的上网历史,设定网站访问权限,并统计不同类型的网站访问频率,帮助企业洞察员工上网模式,发现潜在问题并采取相应管理措施,从而保障信息安全和提高工作效率。
30 7
|
20天前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
130 0
|
21天前
|
存储 算法 安全
基于 Go 语言的公司内网管理软件哈希表算法深度解析与研究
在数字化办公中,公司内网管理软件通过哈希表算法保障信息安全与高效管理。哈希表基于键值对存储和查找,如用户登录验证、设备信息管理和文件权限控制等场景,Go语言实现的哈希表能快速验证用户信息,提升管理效率,确保网络稳定运行。
27 0
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
4天前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
3天前
|
算法 安全 数据安全/隐私保护
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
|
9天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
10天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。

推荐镜像

更多