详解torch.size

简介: 详解torch.size

问题

test_loader 中的y 表示每一个batch对应的128张图片对应的数字,torch.Size([256])表示什么意思?


方法

在打印了X的长度之后,发现X的长度也为256,这表示此处用作测试的X是由256个1x28x28的矩阵构成的多元组矩阵集合。也即,y的长度为256,而不是128。

for X, y in test_loader:  
    print(X.shape, y.shape)
    print(y)
    print(len(X))
print(X)
原因:
在初次设置test_loader的batch_size为256,而不是128.


结语

在本次探索中,通过print(),我对test_loader中的(X, y)的数据格式有了一定的认识,同时对batch_size的重要性有了一定的了解。

目录
相关文章
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch】Expected hidden[0] size (2, 136, 256), got [2, 256, 256]
文章解决了PyTorch中LSTM模型因输入数据的批次大小不一致导致的“Expected hidden[0] size”错误,并提供了两种解决方案:调整批次大小或在DataLoader中设置drop_last=True来丢弃最后一个不足批次大小的数据。
125 1
|
9月前
|
存储 PyTorch 算法框架/工具
torch.Storage()是什么?和torch.Tensor()有什么区别?
torch.Storage()是什么?和torch.Tensor()有什么区别?
76 1
torch.argmax(dim=1)用法
)torch.argmax(input, dim=None, keepdim=False)返回指定维度最大值的序号;
663 0
|
机器学习/深度学习 PyTorch API
Torch
Torch是一个用于构建深度学习模型的开源机器学习库,它基于Lua编程语言。然而,由于PyTorch的出现,现在通常所说的"torch"指的是PyTorch。PyTorch是一个基于Torch的Python库,它提供了一个灵活而高效的深度学习框架。
320 1
|
数据格式
batch_size的探索
batch_size的探索
105 0
The size of tensor a (4) must match the size of tensor b (3) at non-singletonThe size of
The size of tensor a (4) must match the size of tensor b (3) at non-singletonThe size of
1239 0
Expected more than 1 value per channel when training, got input size torch.Size
因为模型中用了batchnomolization,训练中用batch训练的时候当前batch恰好只含一个sample,而由于BatchNorm操作需要多于一个数据计算平均值,因此造成该错误。
986 0
|
PyTorch 算法框架/工具 异构计算
Pytorch出现RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor)
这个问题的主要原因是输入的数据类型与网络参数的类型不符。
769 0
|
PyTorch 算法框架/工具 索引
详细介绍torch中的from torch.utils.data.sampler相关知识
PyTorch中的torch.utils.data.sampler模块提供了一些用于数据采样的类和函数,这些类和函数可以用于控制如何从数据集中选择样本。下面是一些常用的Sampler类和函数的介绍: Sampler基类: Sampler是一个抽象类,它定义了一个__iter__方法,返回一个迭代器,用于生成数据集中的样本索引。 RandomSampler: 随机采样器,它会随机从数据集中选择样本。可以设置随机数种子,以确保每次采样结果相同。 SequentialSampler: 顺序采样器,它会按照数据集中的顺序,依次选择样本。 SubsetRandomSampler: 子集随机采样器
688 0

热门文章

最新文章