详解torch.size

简介: 详解torch.size

问题

test_loader 中的y 表示每一个batch对应的128张图片对应的数字,torch.Size([256])表示什么意思?


方法

在打印了X的长度之后,发现X的长度也为256,这表示此处用作测试的X是由256个1x28x28的矩阵构成的多元组矩阵集合。也即,y的长度为256,而不是128。

for X, y in test_loader:  
    print(X.shape, y.shape)
    print(y)
    print(len(X))
print(X)
原因:
在初次设置test_loader的batch_size为256,而不是128.


结语

在本次探索中,通过print(),我对test_loader中的(X, y)的数据格式有了一定的认识,同时对batch_size的重要性有了一定的了解。

目录
相关文章
|
2月前
|
TensorFlow 算法框架/工具
Tensorflow error(二):x and y must have the same dtype, got tf.float32 != tf.int32
本文讨论了TensorFlow中的一个常见错误,即在计算过程中,变量的数据类型(dtype)不一致导致的错误,并通过使用`tf.cast`函数来解决这个问题。
26 0
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch】Expected hidden[0] size (2, 136, 256), got [2, 256, 256]
文章解决了PyTorch中LSTM模型因输入数据的批次大小不一致导致的“Expected hidden[0] size”错误,并提供了两种解决方案:调整批次大小或在DataLoader中设置drop_last=True来丢弃最后一个不足批次大小的数据。
93 1
|
7月前
|
存储 PyTorch 算法框架/工具
torch.Storage()是什么?和torch.Tensor()有什么区别?
torch.Storage()是什么?和torch.Tensor()有什么区别?
59 1
torch.argmax(dim=1)用法
)torch.argmax(input, dim=None, keepdim=False)返回指定维度最大值的序号;
650 0
|
数据格式
batch_size的探索
batch_size的探索
96 0
The size of tensor a (4) must match the size of tensor b (3) at non-singletonThe size of
The size of tensor a (4) must match the size of tensor b (3) at non-singletonThe size of
1113 0
Expected more than 1 value per channel when training, got input size torch.Size
因为模型中用了batchnomolization,训练中用batch训练的时候当前batch恰好只含一个sample,而由于BatchNorm操作需要多于一个数据计算平均值,因此造成该错误。
935 0
|
PyTorch 算法框架/工具 异构计算
Pytorch出现RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor)
这个问题的主要原因是输入的数据类型与网络参数的类型不符。
655 0
|
并行计算 Python
TypeError: can‘t convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory
运行程序,出现报错信息 TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.。
328 0