Python应用专题 | 10:pandas中分隔符由多个字符组成

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 在使用pandas过程由于文本中存在形如`,` 、`|` 等常规字符,所以需要自定义分隔符,特别是自定义由多个字符组成的分隔符。那么此时在使用 pandas.read_csv()的时候要如何设置?

背景

在使用pandas过程由于文本中存在形如,| 等常规字符,所以需要自定义分隔符,特别是自定义由多个字符组成的分隔符。那么此时在使用 pandas.read_csv()的时候要如何设置?

解决

比如当生成文件的时候使用#|#作为分隔符,直接使用df = pd.read_csv(raw_file, sep='#|#', quoting=3)会报错:

    df = pd.read_csv(raw_file, sep='#|#', quoting=3)
  File "/data/miniconda3/envs/python36/lib/python3.6/site-packages/pandas/io/parsers.py", line 688, in read_csv
    return _read(filepath_or_buffer, kwds)
  File "/data/miniconda3/envs/python36/lib/python3.6/site-packages/pandas/io/parsers.py", line 460, in _read
    data = parser.read(nrows)
  File "/data/miniconda3/envs/python36/lib/python3.6/site-packages/pandas/io/parsers.py", line 1198, in read
    ret = self._engine.read(nrows)
  File "/data/miniconda3/envs/python36/lib/python3.6/site-packages/pandas/io/parsers.py", line 2585, in read
    alldata = self._rows_to_cols(content)
  File "/data/miniconda3/envs/python36/lib/python3.6/site-packages/pandas/io/parsers.py", line 3237, in _rows_to_cols
    self._alert_malformed(msg, row_num + 1)
  File "/data/miniconda3/envs/python36/lib/python3.6/site-packages/pandas/io/parsers.py", line 2998, in _alert_malformed
    raise ParserError(msg)

需要将其改为:

df = pd.read_csv(raw_file, sep='\#\|\#', quoting=3)

官方文档是这么说明的:

 In addition, separators longer than 1 character and different from '\s+' will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: '\r\t'.
相关文章
|
4天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
28 6
|
5天前
|
数据采集 数据安全/隐私保护 开发者
非阻塞 I/O:异步编程提升 Python 应用速度
非阻塞 I/O:异步编程提升 Python 应用速度
|
4天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
18 0
|
5天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
32 7
|
5天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
21 4
|
6天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
25 5
|
6天前
|
机器学习/深度学习 数据可视化 数据处理
Python在数据科学中的应用###
本文探讨了Python语言在数据科学领域的广泛应用及其重要性。通过分析Python的简洁语法、强大的库支持和跨平台特性,阐述了为何Python成为数据科学家的首选工具。文章还介绍了Python在数据处理、分析和可视化方面的具体应用实例,展示了其在提升工作效率和推动科学研究方面的巨大潜力。最后,讨论了未来Python在数据科学领域的发展趋势和挑战。 ###
|
5天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
17 1
|
存储 数据格式 Python
Python基于分隔符的文本数据存取
Python基于分隔符的文本数据存取
Python基于分隔符的文本数据存取
|
12天前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。