LLM 系列 | 08:ChatGPT Prompt实践:文本转换

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 今天这篇小作文主要介绍如何通过构建ChatGPT Prompt以解决文本转换任务。

简介

梅子留酸软齿牙,芭蕉分绿与窗纱。日长睡起无情思,闲看儿童捉柳花。小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖雪糕的小女孩。紧接前文LLM 系列 | 04:ChatGPT Prompt编写指南 05:如何优化ChatGPT Prompt?,今天这篇小作文主要介绍如何通过构建ChatGPT Prompt以解决文本转换任务。

文本转换(Transforming)

这里所谓的文本转换任务,包括但不限于语言翻译、拼写和语法检查、语气调整和格式转换(例如 HTML 到 JSON)等。

翻译

ChatGPT 的训练语料库包含各种语言,翻译自然不在话下。

中文翻译成英文

prompt = f"""
将以下中文翻译成英语: \ 
```您好,我想订购一个搅拌机。```
"""
response = get_completion(prompt)
print(response)

输出结果如下:

Hello, I would like to order a mixer.

语种识别

prompt = f"""
请告诉我以下文本是什么语种: 
```Combien coûte le lampadaire?```
"""
response = get_completion(prompt)
print(response)

输出结果如下:

这是法语。

多语种翻译

prompt = f"""
请将以下文本分别翻译成中文、英文、法语和西班牙语: 
```I want to order a basketball.```
"""
response = get_completion(prompt)
print(response)

输出结果如下:

中文:我想订购一个篮球。
英文:I want to order a basketball.
法语:Je veux commander un ballon de basket.
西班牙语:Quiero pedir una pelota de baloncesto.

使用不同语气翻译

prompt = f"""
请将以下文本翻译成中文,分别展示成正式与非正式两种语气: 
```Would you like to order a pillow?```
"""
response = get_completion(prompt)
print(response)

输出结果如下:

正式语气:请问您需要订购枕头吗?
非正式语气:你要不要订一个枕头?

通用翻译器

随着全球化与跨境商务的发展,交流的用户可能来自各个不同的国家,使用不同的语言,因此我们需要一个通用翻译器,识别各个消息的语种,并翻译成目标用户的母语,从而实现更方便的跨国交流。

user_messages = [
  "La performance du système est plus lente que d'habitude.",  # System performance is slower than normal         
  "Mi monitor tiene píxeles que no se iluminan.",              # My monitor has pixels that are not lighting
  "Il mio mouse non funziona",                                 # My mouse is not working
  "Mój klawisz Ctrl jest zepsuty",                             # My keyboard has a broken control key
  "我的屏幕在闪烁"                                             # My screen is flashing
]

具体 Prompt 如下:

for issue in user_messages:
    prompt = f"告诉我以下文本是什么语种,直接输出语种,如法语,无需输出标点符号: ```{issue}```"
    lang = get_completion(prompt)
    print(f"原始消息 ({lang}): {issue}\n")

    prompt = f"""
    将以下消息分别翻译成英文和中文,并写成
    中文翻译:xxx
    英文翻译:yyy
    的格式:
    ```{issue}```
    """
    response = get_completion(prompt)
    print(response, "\n=========================================")
    time.sleep(40)

输出结果如下:

原始消息 (法语): La performance du système est plus lente que d'habitude.

中文翻译:系统性能比平时慢。
英文翻译:The system performance is slower than usual. 
=========================================
原始消息 (西班牙语。): Mi monitor tiene píxeles que no se iluminan.

中文翻译:我的显示器有一些像素点不亮。
英文翻译:My monitor has pixels that don't light up. 
=========================================
原始消息 (意大利语): Il mio mouse non funziona

中文翻译:我的鼠标不工作了。
英文翻译:My mouse is not working. 
=========================================
原始消息 (波兰语): Mój klawisz Ctrl jest zepsuty

中文翻译:我的Ctrl键坏了
英文翻译:My Ctrl key is broken. 
=========================================
原始消息 (中文): 我的屏幕在闪烁

中文翻译:我的屏幕在闪烁。
英文翻译:My screen is flickering. 
=========================================

语气转换

写作的语气往往会根据受众对象而有所调整。例如,对于工作邮件,我们常常需要使用正式语气与书面用词,而对同龄朋友的微信聊天,可能更多地会使用轻松、口语化的语气。比如将对话体转变成邮件体:

prompt = f"""
将以下文本翻译成商务信函的格式: 
```小老弟,我小李,上回你说咱部门要采购的显示器是多少寸来着?```
"""
response = get_completion(prompt)
print(response)

输出结果如下:

尊敬的XXX(收件人姓名):

我是XXX(发件人姓名),想向您确认一下我们部门需要采购的显示器尺寸是多少寸。上次我们交流时,您提到过这个问题,但我没有完全记住。

如果您能尽快回复我,我将不胜感激。谢谢!

此致,

敬礼

XXX(发件人姓名)

格式转换

ChatGPT非常擅长不同格式之间的转换,例如JSON到HTML、XML、Markdown等。在下述例子中,我们有一个包含餐厅员工姓名和电子邮件的列表的JSON,我们希望将其从JSON转换为HTML。

data_json = { "resturant employees" :[ 
    {"name":"Shyam", "email":"shyamjaiswal@gmail.com"},
    {"name":"Bob", "email":"bob32@gmail.com"},
    {"name":"Jai", "email":"jai87@gmail.com"}
]}

prompt = f"""
将以下Python字典从JSON转换为HTML表格,保留表格标题和列名:{data_json}
"""
response = get_completion(prompt)
print(response)

输出结果如下:

<table>
  <caption>resturant employees</caption>
  <thead>
    <tr>
      <th>name</th>
      <th>email</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>Shyam</td>
      <td>shyamjaiswal@gmail.com</td>
    </tr>
    <tr>
      <td>Bob</td>
      <td>bob32@gmail.com</td>
    </tr>
    <tr>
      <td>Jai</td>
      <td>jai87@gmail.com</td>
    </tr>
  </tbody>
</table>

在Notebook中直接显示HTML:

from IPython.display import display, Markdown, Latex, HTML, JSON
display(HTML(response))

输出结果如下:

微信截图_20230603172503.png

语法检查

拼写及语法的检查与纠正是一个十分常见的需求,特别是使用非母语语言,例如发表英文论文时,这是一件十分重要的事情。

以下给了一个例子,有一个句子列表,其中有些句子存在拼写或语法问题,有些则没有,我们循环遍历每个句子,要求模型校对文本,如果正确则输出“未发现错误”,如果错误则输出纠正后的文本。

语法检查:在发邮件、写文章时,用 ChatGPT 进行语法检查的 Prompt:

prompt = f"""Proofread and correct the following text. If you don't find and errors, just say "No errors found". Don't use     any punctuation around the text:```{text}``` """
text = [ 
  "The girl with the black and white puppies have a ball.",  # The girl has a ball.
  "Yolanda has her notebook.", # ok
  "Its going to be a long day. Does the car need it’s oil changed?",  # Homonyms
  "Their goes my freedom. There going to bring they’re suitcases.",  # Homonyms
  "Your going to need you’re notebook.",  # Homonyms
  "That medicine effects my ability to sleep. Have you heard of the butterfly affect?", # Homonyms
  "This phrase is to cherck chatGPT for spelling abilitty"  # spelling
]

for i in range(len(text)):
    prompt = f"""请校对并更正以下文本,注意纠正文本保持原始语种,无需输出原始文本。
    如果您没有发现任何错误,请说“未发现错误”。

    例如:
    输入:I are happy.
    输出:I am happy.
    ```{text[i]}```"""
    response = get_completion(prompt)
    print(i, response)
    time.sleep(30)

输出结果如下:

0 The girl with the black and white puppies has a ball.
1 未发现错误。
2 It's going to be a long day. Does the car need its oil changed?
3 Their goes my freedom. They're going to bring their suitcases.
4 输出:You're going to need your notebook.
5 That medicine affects my ability to sleep. Have you heard of the butterfly effect?
6 This phrase is to check chatGPT for spelling ability.

以下是一个简单的类Grammarly纠错示例,输入原始文本,输出纠正后的文本,并基于Redlines输出纠错过程。

text = f"""
Got this for my daughter for her birthday cuz she keeps taking \
mine from my room.  Yes, adults also like pandas too.  She takes \
it everywhere with her, and it's super soft and cute.  One of the \
ears is a bit lower than the other, and I don't think that was \
designed to be asymmetrical. It's a bit small for what I paid for it \
though. I think there might be other options that are bigger for \
the same price.  It arrived a day earlier than expected, so I got \
to play with it myself before I gave it to my daughter.
"""

prompt = f"校对并更正以下商品评论:```{text}```"
response = get_completion(prompt)
print(response)

输出结果如下:

I got this for my daughter's birthday because she keeps taking mine from my room. Yes, adults also like pandas too. She takes it everywhere with her, and it's super soft and cute. However, one of the ears is a bit lower than the other, and I don't think that was designed to be asymmetrical. It's also a bit smaller than I expected for the price. I think there might be other options that are bigger for the same price. On the bright side, it arrived a day earlier than expected, so I got to play with it myself before giving it to my daughter.

安装 redlines:

# 如未安装redlines,需先安装
pip3.8 install redlines

使用Redlines对比纠错前后的效果:

from redlines import Redlines
from IPython.display import display, Markdown

diff = Redlines(text,response)
display(Markdown(diff.output_markdown))

输出结果如下:

微信截图_01.png

综合样例:文本翻译+拼写纠正+风格调整+格式转换

prompt = f"""
针对以下三个反引号之间的英文评论文本,
首先进行拼写及语法纠错,
然后将其转化成中文,
再将其转化成优质淘宝评论的风格,从各种角度出发,分别说明产品的优点与缺点,并进行总结。
润色一下描述,使评论更具有吸引力。
输出结果格式为:
【优点】xxx
【缺点】xxx
【总结】xxx
注意,只需填写xxx部分,并分段输出。
将结果输出成Markdown格式。
```{text}```
"""
response = get_completion(prompt)
display(Markdown(response))

输出结果如下:

【优点】

超级柔软可爱,女儿生日礼物非常合适。
成年人也喜欢熊猫,我也很喜欢它。
提前一天到货,我还能玩一下再送给女儿。
【缺点】

一只耳朵比另一只低,不对称。
价格有点贵,但尺寸有点小,可能有更大的同价位选择。
【总结】 这只熊猫玩具非常适合作为生日礼物,柔软可爱,不仅适合孩子,也适合成年人。虽然价格有点贵,但尺寸有点小,不对称的设计也有点让人失望。如果你想要更大的同价位选择,可能需要考虑其他选项。总的来说,这是一款不错的熊猫玩具,但有一些小问题需要注意。
相关文章
|
23天前
|
自然语言处理 算法 JavaScript
面向长文本的多模型协作摘要架构:多LLM文本摘要方法
多LLM摘要框架通过生成和评估两个步骤处理长文档,支持集中式和分散式两种策略。每个LLM独立生成文本摘要,集中式方法由单一LLM评估并选择最佳摘要,而分散式方法则由多个LLM共同评估,达成共识。论文提出两阶段流程:先分块摘要,再汇总生成最终摘要。实验结果显示,多LLM框架显著优于单LLM基准,性能提升最高达3倍,且仅需少量LLM和一轮生成评估即可获得显著效果。
59 10
面向长文本的多模型协作摘要架构:多LLM文本摘要方法
|
7天前
|
人工智能 语音技术
首个可保留情感的音频LLM!Meta重磅开源7B-Spirit LM,一网打尽音频+文本多模态任务
Meta AI 研究团队提出了一种名为 SpiRit-LM 的新型多模态语言模型,该模型能够处理文本和音频,实现两者无缝融合。SpiRit-LM 通过“交织”方法训练,具备多模态融合、情感保留和多任务学习能力,在自动语音识别、文本转语音等任务上表现出色。它有 Base 和 Expressive 两个版本,后者能更好地捕捉情感表达。研究团队在多个基准上测试了其性能,并探索了其在语音助手、内容创作、教育和音频编辑等领域的应用前景。
18 1
|
1月前
|
人工智能 JSON 自然语言处理
Jina Reader:一键将网页内容转为适合 LLM 处理的文本格式,自动抓取和清洗网页内容,支持多种输出格式
Jina Reader 是一款由 Jina AI 推出的开源工具,能够将网页内容快速转换为适合大型语言模型(LLMs)处理的纯文本格式,支持多种输出格式和动态内容处理。
203 20
Jina Reader:一键将网页内容转为适合 LLM 处理的文本格式,自动抓取和清洗网页内容,支持多种输出格式
|
4月前
|
数据采集 自然语言处理 数据挖掘
利用ChatGPT进行数据分析——如何提出一个好的prompt
利用ChatGPT进行数据分析——如何提出一个好的prompt
182 0
|
3月前
|
人工智能 自然语言处理 物联网
LLM2CLIP:使用大语言模型提升CLIP的文本处理,提高长文本理解和跨语言能力
LLM2CLIP 为多模态学习提供了一种新的范式,通过整合 LLM 的强大功能来增强 CLIP 模型。
131 3
LLM2CLIP:使用大语言模型提升CLIP的文本处理,提高长文本理解和跨语言能力
|
3月前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
232 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
|
3月前
|
人工智能 自然语言处理
重要的事情说两遍!Prompt复读机,显著提高LLM推理能力
【10月更文挑战第30天】本文介绍了一种名为“问题重读”(Question Re-reading)的提示策略,旨在提高大型语言模型(LLMs)的推理能力。该策略受人类学习和问题解决过程的启发,通过重新审视输入提示中的问题信息,使LLMs能够提取更深层次的见解、识别复杂模式,并建立更细致的联系。实验结果显示,问题重读策略在多个推理任务上显著提升了模型性能。
96 2
|
4月前
|
人工智能 搜索推荐 API
用于企业AI搜索的Bocha Web Search API,给LLM提供联网搜索能力和长文本上下文
博查Web Search API是由博查提供的企业级互联网网页搜索API接口,允许开发者通过编程访问博查搜索引擎的搜索结果和相关信息,实现在应用程序或网站中集成搜索功能。该API支持近亿级网页内容搜索,适用于各类AI应用、RAG应用和AI Agent智能体的开发,解决数据安全、价格高昂和内容合规等问题。通过注册博查开发者账户、获取API KEY并调用API,开发者可以轻松集成搜索功能。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
企业内训|LLM大模型技术在金融领域的应用及实践-某商业银行分行IT团队
本企业培训是TsingtaoAI技术团队专们为某商业银行分行IT团队开发的LLM大模型技术课程。课程深入分析大模型在金融行业中的发展趋势、底层技术及应用场景,重点提升学员在大模型应用中的实际操作能力与业务场景适应力。通过对全球商用 LLM 产品及国内外技术生态的深度对比,学员将了解大模型在不同企业中的发展路径,掌握如 GPT 系列、Claude 系列、文心一言等大模型的前沿技术。针对金融行业的业务需求,学员将学会如何结合多模态技术改进用户体验、数据分析等服务流程,并掌握大模型训练与工具链的实操技术,尤其是模型的微调、迁移学习与压缩技术。
153 2
|
4月前
|
自然语言处理
从原理上总结chatGPT的Prompt的方法
从原理上总结chatGPT的Prompt的方法
78 0