LLM 系列 | 06:ChatGPT Prompt实践:文本摘要

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 今天这篇小作文主要介绍如何通过构建ChatGPT Prompt以解决「文本摘要」任务。

简介

梅子留酸软齿牙,芭蕉分绿与窗纱。日长睡起无情思,闲看儿童捉柳花。小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖雪糕的小女孩。紧接前文LLM 系列 | 04:ChatGPT Prompt编写指南 05:如何优化ChatGPT Prompt?,今天这篇小作文主要介绍如何通过构建ChatGPT Prompt以解决文本摘要任务。

文本摘要

以商品评论为例。对于电商平台来说,网站上往往存在着海量的商品评论,这些评论反映了所有客户的想法。如果有一个工具能够概括这些海量、冗长的评论,便能够快速洞悉客户的偏好,从而指导平台与商家提供更优质的服务。

示例评论如下:

prod_review_zh = """
这个熊猫公仔是我给女儿的生日礼物,她很喜欢,去哪都带着。
公仔很软,超级可爱,面部表情也很和善。但是相比于价钱来说,
它有点小,我感觉在别的地方用同样的价钱能买到更大的。
快递比预期提前了一天到货,所以在送给女儿之前,我自己玩了会。
"
""

限制长度

尝试限制文本长度为最多30词,优化后的 prompt 如下:

prompt = f"""
你的任务是从电子商务网站上生成一个产品评论的简短摘要。

请对三个反引号之间的评论文本进行概括,最多30个词。

评论: ```{prod_review_zh}```
"
""

response = get_completion(prompt)
print(response)

输出结果如下:

可爱软熊猫公仔,女儿喜欢,但价钱有点贵,大小不够。快递提前一天到货。

关注不同角度

有时,针对不同的业务,对文本的侧重会有所不同。例如对于同一个商品评论文本,物流侧的相关人员会更关心运输时效,而商家更加关心价格与商品质量,平台更关心整体服务体验。这时可以通过增加Prompt提示,来体现对于某个特定角度的侧重。

侧重于运输

prompt = f"""
你的任务是从电子商务网站上生成一个产品评论的简短摘要。

请对三个反引号之间的评论文本进行概括,最多30个词汇,并且聚焦在产品运输上。

评论: ```{prod_review_zh}```
"
""

response = get_completion(prompt)
print(response)

输出结果如下:

快递提前一天到货,熊猫公仔很可爱但有点小,价钱稍高。

从上述结果可以看出,输出结果以“快递提前一天到货”开头,体现了对于快递效率的侧重。

侧重于价格与质量

prompt = f"""
你的任务是从电子商务网站上生成一个产品评论的简短摘要。

请对三个反引号之间的评论文本进行概括,最多30个词,并且聚焦在产品价格和质量上。

评论: ```{prod_review_zh}```
"
""

response = get_completion(prompt)
print(response)

输出结果如下:

可爱的熊猫公仔,质量好,面部表情友好,但价钱有点高,尺寸有点小。快递提前到货。

关键信息提取

在上一个章节中,虽然通过添加关键角度侧重的Prompt,使得文本摘要更侧重于某一特定方面,但是可以发现,结果中也会保留一些其他信息,如价格与质量角度的概括中仍保留了“快递提前到货”的信息。有时这些信息是有帮助的,但如果我们只想要提取某一角度的信息,并过滤掉其他所有信息,则可以要求LLM进行“文本提取(Extract)”而非“文本概括(Summarize)”。

prompt = f"""
你的任务是从电子商务网站上的产品评论中提取相关信息。

请从以下三个反引号之间的评论文本中提取产品运输相关的信息,最多30个词汇。

评论: ```{prod_review_zh}```
"
""

response = get_completion(prompt)
print(response)

输出结果如下:

快递比预期提前了一天到货。

批量进行文本摘要

在实际的工作流中,我们往往有许许多多的评论文本,以下展示了一个基于for循环调用“文本摘要”工具并依次打印的示例。当然,在实际生产中,对于上百万甚至上千万的评论文本,使用for循环也是不现实的,可能需要考虑整合评论、分布式等方法提升运算效率。

review_1 = prod_review

# review for a standing lamp
review_2 = """
Needed a nice lamp for my bedroom, and this one \
had additional storage and not too high of a price \
point. Got it fast - arrived in 2 days. The string \
to the lamp broke during the transit and the company \
happily sent over a new one. Came within a few days \
as well. It was easy to put together. Then I had a \
missing part, so I contacted their support and they \
very quickly got me the missing piece! Seems to me \
to be a great company that cares about their customers \
and products.
"
""

# review for an electric toothbrush
review_3 = """
My dental hygienist recommended an electric toothbrush, \
which is why I got this. The battery life seems to be \
pretty impressive so far. After initial charging and \
leaving the charger plugged in for the first week to \
condition the battery, I've unplugged the charger and \
been using it for twice daily brushing for the last \
3 weeks all on the same charge. But the toothbrush head \
is too small. I’ve seen baby toothbrushes bigger than \
this one. I wish the head was bigger with different \
length bristles to get between teeth better because \
this one doesn’t.  Overall if you can get this one \
around the $50 mark, it's a good deal. The manufactuer's \
replacements heads are pretty expensive, but you can \
get generic ones that're more reasonably priced. This \
toothbrush makes me feel like I've been to the dentist \
every day. My teeth feel sparkly clean!
"
""

# review for a blender
review_4 = """
So, they still had the 17 piece system on seasonal \
sale for around $49 in the month of November, about \
half off, but for some reason (call it price gouging) \
around the second week of December the prices all went \
up to about anywhere from between $70-$89 for the same \
system. And the 11 piece system went up around $10 or \
so in price also from the earlier sale price of $29. \
So it looks okay, but if you look at the base, the part \
where the b

prompt 如下:

import time
for i in range(len(reviews)):
   prompt = f"""
   Your task is to generate a short summary of a product \
   review from an ecommerce site.

   Summarize the review below, delimited by triple \
   backticks in at most 20 words.

   Review: ```{reviews[i]}```
   "
""
   response = get_completion(prompt)
   print(i, response, "\n")
   time.sleep(60)  # 限流

输出结果如下:

0 Soft and cute panda plush toy loved by daughter, but a bit small for the price. Arrived early.

1 Affordable lamp with storage, fast shipping, and excellent customer service. Easy to assemble and missing parts were quickly replaced.

2 Good battery life, small toothbrush head, but effective cleaning. Good deal if bought around $50.

3 The product was on sale for$49in November, but the price increased to $70-$89in December. The base doesn't look as good as previous editions, but the reviewer plans to be gentle with it. A special tip for making smoothies is to freeze the fruits and vegetables beforehand. The motor made a funny noise after a year, and the warranty had expired. Overall quality has decreased.


相关文章
|
1月前
|
数据采集 自然语言处理 数据挖掘
利用ChatGPT进行数据分析——如何提出一个好的prompt
利用ChatGPT进行数据分析——如何提出一个好的prompt
|
16天前
|
人工智能 自然语言处理
重要的事情说两遍!Prompt复读机,显著提高LLM推理能力
【10月更文挑战第30天】本文介绍了一种名为“问题重读”(Question Re-reading)的提示策略,旨在提高大型语言模型(LLMs)的推理能力。该策略受人类学习和问题解决过程的启发,通过重新审视输入提示中的问题信息,使LLMs能够提取更深层次的见解、识别复杂模式,并建立更细致的联系。实验结果显示,问题重读策略在多个推理任务上显著提升了模型性能。
34 2
|
1月前
|
人工智能 搜索推荐 API
用于企业AI搜索的Bocha Web Search API,给LLM提供联网搜索能力和长文本上下文
博查Web Search API是由博查提供的企业级互联网网页搜索API接口,允许开发者通过编程访问博查搜索引擎的搜索结果和相关信息,实现在应用程序或网站中集成搜索功能。该API支持近亿级网页内容搜索,适用于各类AI应用、RAG应用和AI Agent智能体的开发,解决数据安全、价格高昂和内容合规等问题。通过注册博查开发者账户、获取API KEY并调用API,开发者可以轻松集成搜索功能。
|
1月前
|
自然语言处理
从原理上总结chatGPT的Prompt的方法
从原理上总结chatGPT的Prompt的方法
32 0
|
1月前
|
人工智能 iOS开发 MacOS
ChatGPT编程—实现小工具软件(批量替换文本、批量处理图像文件)
ChatGPT编程—实现小工具软件(批量替换文本、批量处理图像文件)
ChatGPT高效提问—prompt实践(智能翻译)
ChatGPT高效提问—prompt实践(智能翻译)
|
1月前
|
人工智能
ChatGPT高效提问—prompt实践(文案助手)
ChatGPT高效提问—prompt实践(文案助手)
|
1月前
|
机器学习/深度学习 算法 搜索推荐
ChatGPT高效提问—prompt实践(智能辅导-心理咨询-职业规划)
ChatGPT高效提问—prompt实践(智能辅导-心理咨询-职业规划)
|
1月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
297 2
|
30天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
59 2