阿里云DSW实例wandb使用示例

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
简介: wandb是一个免费的,用于记录实验数据的工具。wandb相比于tensorboard之类的工具,有更加丰富的用户管理,团队管理功能,更加方便团队协作。本文主要演示如何在阿里云DSW实例中使用wandb。

创建wandb个人账户

  • 地址:wandbai
  • user setting中获取API Key

图片.png

图片.png

DSW操作

创建并激活环境
conda create -n wan python=3.7
conda activate wan

图片.png

安装必要的包
  • requirements.txt
appdirs==1.4.4
charset-normalizer==3.1.0
click==8.1.3
docker-pycreds==0.4.0
gitdb==4.0.10
GitPython==3.1.31
idna==3.4
importlib-metadata==6.7.0
numpy==1.21.6
nvidia-cublas-cu11==11.10.3.66
nvidia-cuda-nvrtc-cu11==11.7.99
nvidia-cuda-runtime-cu11==11.7.99
nvidia-cudnn-cu11==8.5.0.96
pathtools==0.1.2
Pillow==9.5.0
protobuf==4.23.3
psutil==5.9.5
PyYAML==6.0
requests==2.31.0
sentry-sdk==1.25.1
setproctitle==1.3.2
six==1.16.0
smmap==5.0.0
torch==1.13.1
torchvision==0.14.1
typing_extensions==4.6.3
urllib3==2.0.3
wandb==0.15.4
zipp==3.15.0
pip install -r requirements.txt
python文件
import argparse
import random 
import numpy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import logging
logging.propagate = False 
logging.getLogger().setLevel(logging.ERROR)

import wandb

# 配置自己的key
wandb.login(key="831ea3*******")

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

        self.conv2_drop = nn.Dropout2d()

        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))

        x = x.view(-1, 320)

        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)

        return F.log_softmax(x, dim=1)

def train(args, model, device, train_loader, optimizer, epoch):
    model.train()

    for batch_idx, (data, target) in enumerate(train_loader):
        if batch_idx > 20:
          break

        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()

        output = model(data)

        loss = F.nll_loss(output, target)

        loss.backward()

        optimizer.step()

def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    best_loss = 1

    example_images = []
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)

            output = model(data)

            test_loss += F.nll_loss(output, target, reduction='sum').item()

            pred = output.max(1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()

            example_images.append(wandb.Image(
                data[0], caption="Pred: {} Truth: {}".format(pred[0].item(), target[0])))
    #通过wandb来记录模型在测试集上的Accuracy和Loss
    wandb.log({
   
   
        "Examples": example_images,
        "Test Accuracy": 100. * correct / len(test_loader.dataset),
        "Test Loss": test_loss})

# 定义项目在wandb上保存的名称
wandb.init(project="wandb-test")
wandb.watch_called = False

# 在wandb上保存超参数
config = wandb.config          
config.batch_size = 4         
config.test_batch_size = 10   
config.epochs = 50            
config.lr = 0.1              
config.momentum = 0.1          
config.no_cuda = False         
config.seed = 42               
config.log_interval = 10 

def main():
    use_cuda = not config.no_cuda and torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    kwargs = {
   
   'num_workers': 1, 'pin_memory': True} if use_cuda else {
   
   }


    random.seed(config.seed)      
    torch.manual_seed(config.seed)
    numpy.random.seed(config.seed) 
    torch.backends.cudnn.deterministic = True

    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=config.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=config.test_batch_size, shuffle=True, **kwargs)

    model = Net().to(device)
    optimizer = optim.SGD(model.parameters(), lr=config.lr,
                          momentum=config.momentum)

    #记录模型层的维度,梯度,参数信息
    wandb.watch(model, log="all")

    for epoch in range(1, config.epochs + 1):
        train(config, model, device, train_loader, optimizer, epoch)
        test(config, model, device, test_loader)

    #保存模型
    torch.save(model.state_dict(), "model.h5")
    #在wandb上保存模型
    wandb.save('model.h5')

if __name__ == '__main__':
    main()

wandb ui查看

图片.png

图片.png

参考链接

wandb不可缺少的机器学习分析工具

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
1月前
|
存储 分布式计算 网络协议
阿里云服务器内存型r7、r8a、r8y实例区别参考
在阿里云目前的活动中,属于内存型实例规格的云服务器有内存型r7、内存型r8a、内存型r8y这几个实例规格,相比于活动内的经济型e、通用算力型u1实例来说,这些实例规格等性能更强,与计算型和通用型相比,它的内存更大,因此这些内存型实例规格主要适用于数据库、中间件和数据分析与挖掘,Hadoop、Spark集群等场景,本文为大家介绍内存型r7、r8a、r8y实例区别及最新活动价格,以供参考。
阿里云服务器内存型r7、r8a、r8y实例区别参考
|
1月前
|
缓存 编解码 弹性计算
阿里云服务器e/u1/c7/c7a/c8a/c8y/g7/g7a/g8a/g8ae实例适用场景汇总
目前阿里云活动购买云服务器时,除了轻量应用服务器之外,活动内的云服务器实例规格主要以e/u1/c7/c7a/c8a/c8y/g7/g7a/g8a/g8ae这几种为主,本文主要为大家介绍了阿里云服务器的实例规格是什么,有什么用?并汇总了阿里云轻量应用服务器和阿里云服务器e/u1/c7/c7a/c8a/c8y/g7/g7a/g8a/g8ae实例规格适用场景,以供大家了解和选择适合自己的需求的实例规格。
阿里云服务器e/u1/c7/c7a/c8a/c8y/g7/g7a/g8a/g8ae实例适用场景汇总
|
存储 弹性计算 网络协议
阿里云服务器经济型e、通用算力型u1与c7/g7/r7/c8y/g8y/r8y实例区别及选择参考
在阿里云目前的各个活动中,除了轻量应用服务器之外,活动内的云服务器实例规格主要以经济型e、通用算力型u1、计算型c7/c8y、通用型g7/g8y、内存型r7/r8y这几个实例规格为主,c7/c8y属于计算型实例,g7/g8y属于通用型实例,c7/r8y属于内存型实例,c7/g7/r7属于最新第七代云服务器实例,c8y/g8y/r8y属于倚天云服务器实例,不同的云服务器实例规格在性能、特点及适用场景上有所不同,本文大家介绍一下阿里云服务器经济型e、通用算力型u1与c7/g7/r7/c8y/g8y/r8y的区别,以供参考。
阿里云服务器经济型e、通用算力型u1与c7/g7/r7/c8y/g8y/r8y实例区别及选择参考
|
17天前
|
弹性计算 安全
电子好书发您分享《阿里云第八代企业级ECS实例,为企业提供更安全的云上防护》
阿里云第八代ECS实例,搭载第五代英特尔至强处理器与飞天+CIPU架构,提升企业云服务安全与算力。[阅读详情](https://developer.aliyun.com/ebook/8303/116162?spm=a2c6h.26392459.ebook-detail.5.76bf7e5al1Zn4U) ![image](https://ucc.alicdn.com/pic/developer-ecology/cok6a6su42rzm_f422f7cb775444bbbfc3e61ad86800c2.png)
35 14
|
27天前
|
存储 缓存 PHP
阿里云服务器实例、CPU内存、带宽、操作系统选择参考
对于使用阿里云服务器的用户来说,云服务器的选择和使用非常重要,如果实例、内存、CPU、带宽等配置选择错误,可能会影响到自己业务在云服务器上的计算性能及后期运营状况,本文为大家介绍一下阿里云服务器实例、CPU内存、带宽、操作系统的选择注意事项,以供参考。
阿里云服务器实例、CPU内存、带宽、操作系统选择参考
|
1月前
|
缓存 编解码 前端开发
2024年阿里云服务器经济型e、通用算力型u1及计算型、通用型实例适用场景参考
目前阿里云的活动中提供了多种云服务器实例规格,包括经济型e、通用算力型u1、计算型c7/a系列和通用型g7/a系列等,适用于不同场景。实例规格定义了CPU、内存等配置,影响计算和存储能力。本文主要为大家介绍了阿里云服务器的实例规格是什么,并汇总了阿里云轻量应用服务器和阿里云服务器e/u1/c7/c7a/c8a/c8y/g7/g7a/g8a/g8ae实例规格适用场景,以供参考。
2024年阿里云服务器经济型e、通用算力型u1及计算型、通用型实例适用场景参考
|
1月前
|
存储 缓存 编解码
阿里云服务器通用型g7、g7a、g8a、g8ae、g8i、g8y实例区别参考
在阿里云目前的活动中,属于通用型实例规格的云服务器有通用型g7、通用型g7a、通用型g8a、通用型g8ae、通用型g8y这几个实例规格,相比于活动内的经济型e和通用算力型u1等实例规格来说,这些实例规格等性能更强,适用于中小型数据库系统、缓存、搜索集群、大数据服务和集群计算等场景。本文为大家介绍通用型g7、g7a、g8a、g8ae、g8y实例区别及最新活动价格,以供参考。
阿里云服务器通用型g7、g7a、g8a、g8ae、g8i、g8y实例区别参考
|
1月前
|
弹性计算 关系型数据库 MySQL
阿里云服务器经济型e实例2核2G3M带宽99元搭建网站图文教程参考
经济型e实例2核2G,3M固定带宽,40G ESSD Entry云盘,价格只要99元,这是阿里云精心为开发者和普通企业用户推出的一款上云首选必备产品,可用于中小型的web应用以及企业应用。本文为大家展示使用这款云服务器搭建网站的相关教程,以供参考。
阿里云服务器经济型e实例2核2G3M带宽99元搭建网站图文教程参考
|
1月前
|
存储 编解码 网络协议
阿里云服务器计算型c7、c7a、c8a、c8y实例区别参考
在阿里云目前的活动中,属于计算型实例规格的云服务器有计算型c7、计算型c7a、计算型c8a、计算型c8y这几个实例规格,相比于活动内的经济型e和通用算力型u1等实例规格来说,这些实例规格等性能更强,本文为大家介绍计算型c7、c7a、c8a、c8y实例区别及最新活动价格,以供参考。
阿里云服务器计算型c7、c7a、c8a、c8y实例区别参考
|
1月前
|
SQL 关系型数据库 MySQL
购买阿里云RDS实例
购买阿里云RDS实例
167 2

热门文章

最新文章