AI大模型迈入应用时代,每日互动推动“可控大模型”落地

简介: ChatGPT的推出引爆了一场波及全球科技领域的“AI飓风”,越来越多的企业入局大模型赛道,推动AI全面迈进应用时代。在2023数据安全发展大会上,每日互动创始人、CEO方毅谈及大模型,他表示,大模型的能力令人震撼,“吃”的是数据,“吐”的是智能。通过与行业知识结合,大模型能从海量的数据中提取出有价值的信息,为业务决策提供智能支持,但现阶段大模型缺乏对价值观的判断。在实际的业务场景中,垂直行业更需要“可控大模型”。

WechatIMG100.png

垂直行业更需要可控大模型
当下,大模型正在不断精进,以GPT-4、文心一言为代表的大模型(LLM)表现出了强大的逻辑推理能力,并能够很好地处理复杂任务,使得社会生产力得到了飞跃式提升。

面对大模型热度的持续狂飙,很多企业跃跃欲试,希望在发展和应用大模型的道路上抢占先机。然而在实际落地大模型的过程中,企业发现目前的大模型多是通用大模型(GLM),这些通用大模型未经过相应专业领域知识的系统性训练和学习,无法很好地满足垂直领域的专业需求;而如果考虑结合所在行业的细分需求、专业Know-How进行大模型的精调,则要花费高昂的算力成本,也需要足够优质的“算料”,也就是数据的“投喂”。此外,这些数据在流转过程中的合规安全问题,也是企业进行大模型应用过程中需要关注的重要因素。

综上,每日互动率先提出垂直行业更需要可控大模型。具体而言,大模型的可控体现在算力、算法、算料等三个方面:一是在“算力”上实现成本可控。相信随着云计算、芯片等技术的不断突破以及一些大模型走向开源,未来企业接入和使用大模型所需要的成本将越来越可控。二是在“算法”上要应用可控,即大模型的应用场景和计算输出结果要可管、可控、可计量。未来在足够的算力和算料支撑下,大模型的能力将进化到更高的水平,行业需要确保大模型做出的决策保持公平和善意。三是在“算料”上要安全可控。算料即数据,当下对每个企业来讲,数据要素都具有非常重要的战略意义。如何在数据流转和处理链路上,真正做到安全、可控,更好地保护个人隐私?这是当下大模型发展需要重视和解决的命题。

推动大模型实现安全可控

作为一家数据智能企业,每日互动更多的是推动大模型在“算法”和“算料”这两个层面实现可控。每日互动首倡大数据联合计算模式,并积极参与中国(温州)数安港建设,推动大模型在算法应用和数据安全层面实现可控。数安港打造的大数据联合计算平台,为垂直行业进行大模型的训练提供了安全可控的闭环容器。

首先,在数据安全层面,平台实现了“数据不流转而数据价值流转”“数据可用不可拥”,使各方数据得以在一个具有公信力的中立安全环境中进行融合计算,共同参与大模型的训练和调优。其次,大数据联合计算平台采用“三审核、三隔离”的方式,会对数据处理逻辑算法、输出结果、应用场景等进行严格审核,实现了大模型在算法应用场景和计算结果上的可控。

每日互动的可控大模型探索
在推动大模型实现可控的前提下,每日互动也积极探索将大模型与自身数智能力结合,帮助垂直领域客户更好地解决具体的业务问题。

每日互动积累了海量的数据资源和深厚的行业经验,在算法建模、图像视觉、机器学习等前沿技术领域持续深耕。每日互动通过充分释放“算料”价值,输出“算法”经验,辅助垂直行业客户定制化训练专属自身的垂直大模型,更好地发挥大模型的能力以针对性解决具体的业务场景问题。

为助力垂直行业客户的数字化转型升级,每日互动打造了数据智能操作系统DiOS(Data Intelligence Operating System)。DiOS承担着“让数好用,把数用好”的使命,致力于帮助行业客户更高效地管理和使用数据。目前,每日互动也在尝试将大模型融入到DiOS产品中,推进研发DiOS智能助手。通过接入开源大模型,并进行私有化部署和专门调优,每日互动将公司在治数、用数方面的经验和能力以及元数据等输入给大模型学习,推动大模型进化成为一个数据治理、加工和应用方面的超级专家,以DiOS智能助手的形态为客户服务。

类似ChatGPT的交互方式,未来行业客户可以用自然语言对话的方式,与DiOS智能助手进行互动。“我想了解本月公司的App在浙江的活跃情况,请帮我写段分析代码”“请帮我圈选出周边游偏好人群”“我要做公司快消类目商品的销售业绩分析,用哪些数据分析模板比较合适”……每日互动希望通过大模型能力的应用,变革数据治理和应用的范式,让更多的行业客户和中小企业能够极其便捷地挖掘数据价值,实现数智普惠

在商业服务领域,每日互动正在探索通过大模型解决投放人群和创意素材精准匹配的难题,帮助品牌广告主和互联网企业实现更有效的广告投放及用户触达。在品牌营销场景,每日互动正在打造“智选人群”功能,帮助营销人员基于广告文案和商品特性找到对应的TA人群。借助大模型对文本语义的学习和理解,每日互动帮助营销人员提取出商品和广告文案的内容特征,并智能预测出高购买潜力人群,进行定向触达,从而提升广告投放效果。

此外,每日互动也在探索应用大模型等前沿技术以促进内部生产经营效率提升的创新方案,比如结合语言链、RPA(机器人流程自动化)等技术,将以往需要大量人工操作以及复杂流程才能实现的诸多环节进行自动化,并在积累一定规模知识之后,逐步实现业务流程的智能化,让员工得以更加专注于高层次的工作,进一步释放内部生产力。

对于大模型,每日互动CTO叶新江做过一个非常形象的比喻,“大模型相当于一个全新的大脑,输出中枢能力,但它需要手和脚,才能和环境互动、反馈和优化,并完成各种具体的动作”。

每日互动自身的核心业务逻辑就是“DMP(Data-Machine-People)”,构成“数据积累-数据治理-数据应用”的业务闭环。每日互动正是基于DMP的闭环路径开展可控大模型的行业落地实践,把大模型“大脑”的能力输出给各行各业使用,并结合行业客户的应用反馈持续进行大模型的训练迭代。我们期待和行业伙伴们携手,在安全可控的前提下,更好地应用大模型,推动产业发展和社会进步。

目录
相关文章
|
13天前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
162 64
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
智谱AI推出的GLM-4V-Flash是一款专注于图像理解的免费开放大模型,提供API接口支持用户上传图片URL或Base64编码图片获取详细的图像描述。该模型通过深度学习和卷积神经网络技术,简化了图像分析流程,提高了开发效率,适用于内容审核、辅助视障人士、社交媒体、教育和电子商务等多个应用场景。
42 14
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
|
2天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
32 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
4天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
17 5
【AI系统】模型转换流程
|
6天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
|
12天前
|
机器学习/深度学习 人工智能 语音技术
Fugatto:英伟达推出的多功能AI音频生成模型
Fugatto是由英伟达推出的多功能AI音频生成模型,能够根据文本提示生成音频或视频,并修改现有音频文件。该模型基于增强型的Transformer模型,支持复杂的组合指令,具有强大的音频生成与转换能力,广泛应用于音乐创作、声音设计、语音合成等领域。
60 1
Fugatto:英伟达推出的多功能AI音频生成模型
|
9天前
|
数据采集 机器学习/深度学习 人工智能
AI在医疗诊断中的应用与挑战
随着人工智能(AI)技术的飞速发展,其在医疗领域的应用也日益广泛。从辅助医生进行疾病诊断到提供个性化治疗方案,AI技术正在改变着传统医疗模式。然而,AI在医疗诊断中的应用并非一帆风顺,面临着数据质量、模型可解释性、法规政策等一系列挑战。本文将从AI在医疗诊断中的具体应用场景出发,探讨其面临的主要挑战及未来发展趋势。
|
7天前
|
机器学习/深度学习 人工智能 机器人
AI技术在医疗领域的应用及挑战
本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的定义和分类开始,然后详细介绍其在医疗领域的具体应用,如疾病诊断、药物研发等。最后,我们将讨论AI在医疗领域面临的挑战,包括数据隐私、伦理问题等。
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用##
在现代医疗领域,人工智能(AI)技术正在逐步改变传统的诊疗方式。本文将探讨AI在医疗中的几个关键应用,包括医学影像分析、疾病预测和个性化治疗等。通过这些应用,AI不仅提高了诊断的准确性和效率,还为患者提供了更加精准的治疗方案。 ##
23 2
|
8天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗健康领域中的多维度应用,从疾病诊断、个性化治疗到健康管理,展现了AI如何革新传统医疗模式。通过分析当前实践案例与最新研究成果,文章揭示了AI技术提升医疗服务效率、精准度及患者体验的巨大潜力,并展望了其在未来医疗体系中不可或缺的地位。 ####