SpringBoot中如何解决Redis的缓存穿透、缓存击穿、缓存雪崩?

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: SpringBoot中如何解决Redis的缓存穿透、缓存击穿、缓存雪崩?

大家好,我是飘渺!

今天给大家介绍一下如何在SpringBoot中解决Redis的缓存穿透、缓存击穿、缓存雪崩的问题。


缓存穿透


什么是缓存穿透

缓存穿透指的是一个缓存系统无法缓存某个查询的数据,从而导致这个查询每一次都要访问数据库。

常见的Redis缓存穿透场景包括:

  1. 查询一个不存在的数据:攻击者可能会发送一些无效的查询来触发缓存穿透。
  2. 查询一些非常热门的数据:如果一个数据被访问的非常频繁,那么可能会导致缓存系统无法处理这些请求,从而造成缓存穿透。
  3. 查询一些异常数据:这种情况通常发生在数据服务出现故障或异常时,从而造成缓存系统无法访问相关数据,从而导致缓存穿透。

如何解决

我们可以使用Guava在内存中维护一个布隆过滤器。具体步骤如下:

  1. 添加Guava和Redis依赖:
<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>29.0-jre</version>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
  1. 创建一个BloomFilterUtil类,用于在缓存中维护Bloom Filter。
public class BloomFilterUtil {
    // 布隆过滤器的预计容量
    private static final int expectedInsertions = 1000000;
    // 布隆过滤器误判率
    private static final double fpp = 0.001;
    private static BloomFilter<String> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charset.defaultCharset()), expectedInsertions, fpp);
    /**
     * 向Bloom Filter中添加元素
     */
    public static void add(String key){
        bloomFilter.put(key);
    }
    /**
     * 判断元素是否存在于Bloom Filter中
     */
    public static boolean mightContain(String key){
        return bloomFilter.mightContain(key);
    }
}
  1. 在Controller中查询数据时,先根据请求参数进行Bloom Filter的过滤
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@GetMapping("/user/{id}")
public User getUserById(@PathVariable Long id){
    // 先从布隆过滤器中判断此id是否存在
    if(!BloomFilterUtil.mightContain(id.toString())){
        return null;
    }
    // 查询缓存数据
    String userKey = "user_"+id.toString();
    User user = (User) redisTemplate.opsForValue().get(userKey);
    if(user == null){
        // 查询数据库
        user = userRepository.findById(id).orElse(null);
        if(user != null){
            // 将查询到的数据加入缓存
            redisTemplate.opsForValue().set(userKey, user, 300, TimeUnit.SECONDS);
        }else{
            // 查询结果为空,将请求记录下来,并在布隆过滤器中添加
            BloomFilterUtil.add(id.toString());
        }
    }
    return user;
}


缓存击穿


什么是缓存击穿

缓存击穿指的是在一些高并发访问下,一个热点数据从缓存中不存在,每次请求都要直接查询数据库,从而导致数据库压力过大,并且系统性能下降的现象。

缓存击穿的原因通常有以下几种:

  1. 缓存中不存在所需的热点数据:当系统中某个热点数据需要被频繁访问时,如果这个热点数据最开始没有被缓存,那么就会导致系统每次请求都需要直接查询数据库,造成数据库负担。
  2. 缓存的热点数据过期:当一个热点数据过期并需要重新缓存时,如果此时有大量请求,那么就会导致所有请求都要直接查询数据库。

如何解决

主要思路 : 在遇到缓存击穿问题时,我们可以在查询数据库之前,先判断一下缓存中是否已有数据,如果没有数据则使用Redis的单线程特性,先查询数据库然后将数据写入缓存中。

  1. 添加Redis依赖
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
  1. 在Controller中查询数据时,先从缓存中查询数据,如果缓存中无数据则进行锁操作
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@GetMapping("/user/{id}")
public User getUserById(@PathVariable Long id){
    // 先从缓存中获取值
    String userKey = "user_"+id.toString();
    User user = (User) redisTemplate.opsForValue().get(userKey);
    if(user == null){
        // 查询数据库之前加锁
        String lockKey = "lock_user_"+id.toString();
        String lockValue = UUID.randomUUID().toString();
        try{
            Boolean lockResult = redisTemplate.opsForValue().setIfAbsent(lockKey, lockValue, 60, TimeUnit.SECONDS);
            if(lockResult != null && lockResult){
                // 查询数据库
                user = userRepository.findById(id).orElse(null);
                if(user != null){
                    // 将查询到的数据加入缓存
                    redisTemplate.opsForValue().set(userKey, user, 300, TimeUnit.SECONDS);
                }
            }
        }finally{
            // 释放锁
            if(lockValue.equals(redisTemplate.opsForValue().get(lockKey))){
                redisTemplate.delete(lockKey);
            }
        }
    }
    return user;
}


缓存雪崩


什么是缓存雪崩

指缓存中大量数据的失效时间集中在某一个时间段,导致在这个时间段内缓存失效并额外请求数据库查询数据的请求大量增加,从而对数据库造成极大的压力和负荷。

常见的Redis缓存雪崩场景包括:

  1. 缓存服务器宕机:当缓存服务器宕机或重启时,大量的访问请求将直接命中数据库,并在同一时间段内导致大量的数据库查询请求,从而将数据库压力大幅提高。
  2. 缓存数据同时失效:在某个特定时间点,缓存中大量数据的失效时间集中在一起,这些数据会在同一时间段失效,并且这些数据被高频访问,将导致大量的访问请求去查询数据库。
  3. 缓存中数据过期时间设计不合理:当缓存中的数据有效时间过短,且数据集中在同一时期失效时,就容易导致大量的请求直接查询数据库,加剧数据库压力。
  4. 波动式的访问过程:当数据的访问存在波动式特征时,例如输出某些活动物品或促销商品时,将会带来高频的查询请求访问,导致缓存大量失效并产生缓存雪崩。

如何解决

在遇到缓存雪崩时,我们可以使用两种方法:一种是将缓存过期时间分散开,即为不同的数据设置不同的过期时间;另一种是使用Redis的多级缓存架构,通过增加一层代理层来解决。具体步骤如下:

  1. 添加相关依赖
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
    <groupId>net.sf.ehcache</groupId>
    <artifactId>ehcache</artifactId>
    <version>2.10.6</version>
</dependency>
  1. 在application.properties中配置Ehcache缓存
spring.cache.type=ehcache
  1. 创建一个CacheConfig类,用于配置Ehcache:
@Configuration
@EnableCaching
public class CacheConfig {
    @Bean
    public EhCacheCacheManager ehCacheCacheManager(CacheManager cm){
        return new EhCacheCacheManager(cm);
    }
    @Bean
    public CacheManager ehCacheManager(){
        EhCacheManagerFactoryBean cmfb = new EhCacheManagerFactoryBean();
        cmfb.setConfigLocation(new ClassPathResource("ehcache.xml"));
        cmfb.setShared(true);
        return cmfb.getObject();
    }
}
  1. 在ehcache.xml中添加缓存配置
<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:noNamespaceSchemaLocation="http://ehcache.org/ehcache.xsd"
    updateCheck="true"
    monitoring="autodetect"
    dynamicConfig="true">
    <cache name="userCache" maxEntriesLocalHeap="10000" timeToLiveSeconds="60" timeToIdleSeconds="30"/>
</ehcache>
  1. 在Controller中查询数据时,先从Ehcache缓存中获取,如果缓存中无数据则再从Redis缓存中获取数据
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@Autowired
private CacheManager ehCacheManager;
@GetMapping("/user/{id}")
@Cacheable(value = "userCache", key = "#id")
public User getUserById(@PathVariable Long id){
    // 先从Ehcache缓存中获取
    String userKey = "user_"+id.toString();
    User user = (User) ehCacheManager.getCache("userCache").get(userKey).get();
    if(user == null){
        // 再从Redis缓存中获取
        user = (User) redisTemplate.opsForValue().get(userKey);
        if(user != null){
            ehCacheManager.getCache("userCache").put(userKey, user);
        }
    }
    return user;
}

以上就是使用SpringBoot时如何解决Redis的缓存穿透、缓存击穿、缓存雪崩的常用方法。

目录
相关文章
|
4月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
2月前
|
缓存 数据库连接 数据库
缓存三剑客(穿透、击穿、雪崩)
缓存穿透指查询数据库和缓存中都不存在的数据,导致请求直接冲击数据库。解决方案包括缓存空对象和布隆过滤器。缓存击穿是大量请求访问同一个失效的热点数据,使数据库瞬间压力剧增,解决方法有提前预热、设置永不过期、加锁限流等。缓存雪崩是大量key同时失效,导致所有请求直达数据库,可通过引入随机过期时间缓解。三者分别对应单点爆破、全面崩塌等问题,需根据场景选择合适策略优化系统性能与稳定性。
192 0
|
2月前
|
存储 缓存 NoSQL
如何解决缓存击穿?
缓存击穿是指热点数据失效时大量请求直接冲击数据库,可能导致系统崩溃。解决方案包括:永不过期策略避免缓存失效瞬间的穿透;互斥锁控制并发访问;热点预热提前刷新缓存;熔断降级在数据库压力大时返回默认值;二级缓存降低Redis压力。实际中常组合使用多种方案,如热点预热+互斥锁+熔断降级,以提升系统稳定性与性能。
304 0
|
6天前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
60 1
Redis专题-实战篇二-商户查询缓存
|
4月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
696 0
|
6天前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
1月前
|
缓存 监控 安全
告别缓存击穿!Go 语言中的防并发神器:singleflight 包深度解析
在高并发场景中,多个请求同时访问同一资源易导致缓存击穿、数据库压力过大。Go 语言提供的 `singleflight` 包可将相同 key 的请求合并,仅执行一次实际操作,其余请求共享结果,有效降低系统负载。本文详解其原理、实现及典型应用场景,并附示例代码,助你掌握高并发优化技巧。
181 0
|
2月前
|
缓存 NoSQL 数据库
什么是缓存击穿
缓存击穿是指热点缓存key突然失效,导致大量并发请求直接冲击数据库,造成巨大压力。常见于高并发场景,如热门商品信息失效时。解决方法包括设置热点key永不过期、使用分布式锁、预热数据、熔断降级等,以保障系统稳定性。
443 0
|
4月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
176 32
|
4月前
|
缓存 NoSQL Java
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
100 5
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡