线程状态概述
当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态。在线程的生命周期中,
有几种状态呢?在API中 java.lang.Thread.State 这个枚举中给出了六种线程状态:
这里先列出各个线程状态发生的条件,下面将会对每种状态进行详细解析
Timed Waiting(计时等待)
Timed Waiting在API中的描述为:一个正在限时等待另一个线程执行一个(唤醒)动作的线程处于这一状态。单独
的去理解这句话,真是玄之又玄,其实我们在之前的操作中已经接触过这个状态了,在哪里呢?
在我们写卖票的案例中,为了减少线程执行太快,现象不明显等问题,我们在run方法中添加了sleep语句,这样就强制当前正在执行的线程休眠(暂停执行),以“减慢线程”。
其实当我们调用了sleep方法之后,当前执行的线程就进入到“休眠状态”,其实就是所谓的Timed Waiting(计时等待),
- 进入 TIMED_WAITING 状态的一种常见情形是调用的 sleep 方法,单独的线程也可以调用,不一定非要有协
作关系。 - 为了让其他线程有机会执行,可以将Thread.sleep()的调用放线程run()之内。这样才能保证该线程执行过程
中会睡眠 - sleep与锁无关,线程睡眠到期自动苏醒,并返回到Runnable(可运行)状态
实现一个计数器,计数到100,在每个数字之间暂停1秒,每隔10个数字输出一个字符串:
public class MyThread extends Thread { public void run() { for (int i = 0; i < 100; i++) { if ((i) % 10 == 0) { System.out.println("‐‐‐‐‐‐‐" + i); } System.out.print(i); try { Thread.sleep(1000); System.out.print(" 线程睡眠1秒!\n"); } catch (InterruptedException e) { e.printStackTrace(); } } } public static void main(String[] args) { new MyThread().start(); } }
小提示:sleep()中指定的时间是线程不会运行的最短时间。因此,sleep()方法不能保证该线程睡眠到期后就开始立刻执行
Timed Waiting 线程状态图
BLOCKED(锁阻塞)
Blocked状态在API中的介绍为:一个正在阻塞等待一个监视器锁(锁对象)的线程处于这一状态。
我们已经学完同步机制,那么这个状态是非常好理解的了。比如,线程A与线程B代码中使用同一锁,如果线程A获取到锁,线程A进入到Runnable状态,那么线程B就进入到Blocked锁阻塞状态。
这是由Runnable状态进入Blocked状态。除此Waiting以及Time Waiting状态也会在某种情况下进入阻塞状态,而这部分内容作为扩充知识点带领大家了解一下。
Blocked 线程状态图
Waiting(无限等待)
Wating状态在API中介绍为:一个正在无限期等待另一个线程执行一个特别的(唤醒)动作的线程处于这一状态。那么我们之前遇到过这种状态吗?答案是并没有,但并不妨碍我们进行一个简单深入的了解。
我们会发现,一个调用了某个对象的 Object.wait 方法的线程会等待另一个线程调用此对象的Object.notify()方法 或 Object.notifyAll()方法。其实waiting状态并不是一个线程的操作,它体现的是多个线程间的通信,可以理解为多个线程之间的协作关系,多个线程会争取锁,同时相互之间又存在协作关系。就好比在公司里你和你的同事们,你们可能存在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。
当多个线程协作时,比如A,B线程,如果A线程在Runnable(可运行)状态中调用了wait()方法那么A线程就进入了Waiting(无限等待)状态,同时失去了同步锁。假如这个时候B线程获取到了同步锁,在运行状态中调用了 notify()方法,那么就会将无限等待的A线程唤醒。注意是唤醒,如果获取到锁对象,那么A线程唤醒后就进入Runnable(可运行)状态;如果没有获取锁对象,那么就进入到Blocked(锁阻塞状态)。
Waiting 线程状态图
总的流程图
我们在翻阅API的时候会发现Timed Waiting(计时等待) 与 Waiting(无限等待) 状态联系还是很紧密的,比如Waiting(无限等待) 状态中wait方法是空参的,而timed waiting(计时等待) 中wait方法是带参的。这种带参的方法,其实是一种倒计时操作,相当于我们生活中的小闹钟,我们设定好时间,到时通知,可是 如果提前得到(唤醒)通知,那么设定好时间在通知也就显得多此一举了,那么这种设计方案其实是一举两得。如果没有得到(唤醒)通知,那么线程就处于Timed Waiting状态,直到倒计时完毕自动醒来;如果在倒计时期间得到(唤醒)通知,那么线程从Timed Waiting状态立刻唤醒。
线程间通信
**概念:**多个线程在处理同一个资源,但是处理的动作(线程的任务)却不相同。
比如:线程A用来生成包子的,线程B用来吃包子的,包子可以理解为同一资源,线程A与线程B处理的动作,一个是生产,一个是消费,那么线程A与线程B之间就存在线程通信问题。
如何保证线程间通信有效利用资源:
多个线程在处理同一个资源,并且任务不同时,需要线程通信来帮助解决线程之间对同一个变量的使用或操作。 就是多个线程在操作同一份数据时, 避免对同一共享变量的争夺。也就是我们需要通过一定的手段使各个线程能有效的利用资源。而这种手段即—— **等待唤醒机制。
什么是等待唤醒机制
这是多个线程间的一种协作机制。谈到线程我们经常想到的是线程间的竞争(race),比如去争夺锁,但这并不是故事的全部,线程间也会有协作机制。就好比在公司里你和你的同事们,你们可能存在在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。
就是在一个线程进行了规定操作后,就进入等待状态(wait()), 等待其他线程执行完他们的指定代码过后 再将其唤醒(notify());在有多个线程进行等待时, 如果需要,可以使用 notifyAll()来唤醒所有的等待线程。
wait/notify 就是线程间的一种协作机制。
等待唤醒中的方法
等待唤醒机制就是用于解决线程间通信的问题的,使用到的3个方法的含义如下:
- wait:线程不再活动,不再参与调度,进入 wait set 中,因此不会浪费 CPU 资源,也不会去竞争锁了,这时的线程状态即是 WAITING。它还要等着别的线程执行一个特别的动作,也即是“通知(notify)”在这个对象上等待的线程从wait set 中释放出来,重新进入到调度队列(ready queue)中
- notify:则选取所通知对象的 wait set 中的一个线程释放;例如,餐馆有空位置后,等候就餐最久的顾客最先入座
- notifyAll:则释放所通知对象的 wait set 上的全部线程。
调用wait和notify方法需要注意的细节
- wait方法与notify方法必须要由同一个锁对象调用。因为:对应的锁对象可以通过notify唤醒使用同一个锁对象调用的wait方法后的线程。
- wait方法与notify方法是属于Object类的方法的。因为:锁对象可以是任意对象,而任意对象的所属类都是继承了Object类的。
- wait方法与notify方法必须要在同步代码块或者是同步函数中使用。因为:必须要通过锁对象调用这2个方法。
总结
线程通信就是操作系统中的PV操作