python opencv 图像处理进阶篇(二)

简介: python opencv 图像处理进阶篇(二)

边缘检测


普通边缘检测

20210713232902892.png

opencv提供许多边缘检测滤波函数,这些函数都会将非边缘区域转为黑色,将边缘区域转为白色或其他饱和颜色,但是这些函数容易将噪声错误识别为边缘。缓解这个问题首先对图像进行模糊处理。

python实现方法如下:


import cv2
def edges(src,blurKsize=7,edgeKsize=5):
    if blurKsize >=3:
        src=cv2.imread(src)
        cv2.imshow('data',src)
        blurredSrc=cv2.medianBlur(src,blurKsize)
        graySrc=cv2.cvtColor(blurredSrc,cv2.COLOR_BGR2GRAY)
    else:
        graySrc=cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)
    cv2.Laplacian(graySrc,cv2.CV_8U,graySrc,scale=edgeKsize)
    normalizedInverseAlpha=(1.0/255)*(255-graySrc)
    channels=cv2.split(src)
    for channel in channels:
        channel[:]=channel*normalizedInverseAlpha
    img=cv2.merge(channels)
    cv2.imshow('edge',img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


canny边缘检测


1.高斯滤波


滤波的主要目的是降噪,一般的图像处理算法都需要先进行降噪。而高斯滤波主要使图像变得平滑(模糊),同时也有可能增大了边缘的宽度。

高斯函数是一个类似与正态分布的中间大两边小的函数,下面是一个sigma = 1.4,尺寸为3x3的高斯卷积核的例子(需要注意归一化):

20210713235502929.png


若图像中一个3x3的窗口为A,要滤波的像素点为e,则经过高斯滤波之后,像素点e的亮度值为:



2.梯度和方向


图像中的边缘可以指向各个方向,因此Canny算法使用四个算子来检测图像中的水平、垂直和对角边缘。边缘检测的算子(如Roberts,Prewitt,Sobel等)返回水平Gx和垂直Gy方向的一阶导数值,由此便可以确定像素点的梯度G和方向theta


20210713235629649.png

其中G为梯度强度, theta表示梯度方向,arctan为反正切函数。下面以Sobel算子为例讲述如何计算梯度强度和方向。


x和y方向的Sobel算子分别为:

20210713235651333.png


若图像中一个3x3的窗口为A,要计算梯度的像素点为e,则和Sobel算子进行卷积之后,像素点e在x和y方向的梯度值分别为:


20210713235719403.png

3.非极大值抑制


非极大值抑制是一种边缘稀疏技术,非极大值抑制的作用在于“瘦”边。对图像进行梯度计算后,仅仅基于梯度值提取的边缘仍然很模糊。对于标准3,对边缘有且应当只有一个准确的响应。而非极大值抑制则可以帮助将局部最大值之外的所有梯度值抑制为0,对梯度图像中每个像素进行非极大值抑制的算法是:


当前像素的梯度强度与沿正负梯度方向上的两个像素进行比较。

如果当前像素的梯度强度与另外两个像素相比最大,则该像素点保留为边缘点,否则该像素点将被抑制。

通常为了更加精确的计算,在跨越梯度方向的两个相邻像素之间使用线性插值来得到要比较的像素梯度,现举例如下:


20210713235837794.png

如上图所示,将梯度分为8个方向,分别为E、NE、N、NW、W、SW、S、SE,其中0代表0045o,1代表45090o,2代表-900-45o,3代表-4500o。像素点P的梯度方向为theta,则像素点P1和P2的梯度线性插值为:


因此非极大值抑制的伪代码描写如下:


20210713235959950.png

4.双阈值抑制


在施加非极大值抑制之后,剩余的像素可以更准确地表示图像中的实际边缘。然而,仍然存在由于噪声和颜色变化引起的一些边缘像素。为了解决这些杂散响应,必须用弱梯度值过滤边缘像素,并保留具有高梯度值的边缘像素,可以通过选择高低阈值来实现。如果边缘像素的梯度值高于高阈值,则将其标记为强边缘像素;如果边缘像素的梯度值小于高阈值并且大于低阈值,则将其标记为弱边缘像素;如果边缘像素的梯度值小于低阈值,则会被抑制。阈值的选择取决于给定输入图像的内容。


20210713234452431.png


5.抑制孤立低阈值点


到目前为止,被划分为强边缘的像素点已经被确定为边缘,因为它们是从图像中的真实边缘中提取出来的。然而,对于弱边缘像素,将会有一些争论,因为这些像素可以从真实边缘提取也可以是因噪声或颜色变化引起的。为了获得准确的结果,应该抑制由后者引起的弱边缘。通常,由真实边缘引起的弱边缘像素将连接到强边缘像素,而噪声响应未连接。为了跟踪边缘连接,通过查看弱边缘像素及其8个邻域像素,只要其中一个为强边缘像素,则该弱边缘点就可以保留为真实的边缘。


抑制孤立边缘点的伪代码描述如下:


20210714000124767.png


img=cv2.imread('data/gril.jpg',0)
cv2.imshow("canny",cv2.Canny(img,200,300))
cv2.waitKey(0)
cv2.destroyAllWindows()

20210713234836773.png



相关文章
|
3月前
|
算法 计算机视觉
基于qt的opencv实时图像处理框架FastCvLearn实战
本文介绍了一个基于Qt的OpenCV实时图像处理框架FastCvLearn,通过手撕代码的方式详细讲解了如何实现实时人脸马赛克等功能,并提供了结果展示和基础知识回顾。
140 7
基于qt的opencv实时图像处理框架FastCvLearn实战
|
1月前
|
计算机视觉 开发者 Python
利用Python进行简单的图像处理
【10月更文挑战第36天】本文将引导读者理解如何使用Python编程语言和其强大的库,如PIL和OpenCV,进行图像处理。我们将从基本的图像操作开始,然后逐步深入到更复杂的技术,如滤波器和边缘检测。无论你是编程新手还是有经验的开发者,这篇文章都将为你提供新的视角和技能,让你能够更好地理解和操作图像数据。
|
2月前
|
计算机视觉 Python
python利用pyqt5和opencv打开电脑摄像头并进行拍照
本项目使用Python的PyQt5和OpenCV库实现了一个简单的摄像头应用。用户可以通过界面按钮打开或关闭摄像头,并实时预览视频流。点击“拍照”按钮可以捕捉当前画面并保存为图片文件。该应用适用于简单的图像采集和处理任务。
155 0
python利用pyqt5和opencv打开电脑摄像头并进行拍照
|
2月前
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
104 2
|
3月前
|
机器学习/深度学习 计算机视觉 Python
opencv环境搭建-python
本文介绍了如何在Python环境中安装OpenCV库及其相关扩展库,包括numpy和matplotlib,并提供了基础的图像读取和显示代码示例,同时强调了使用Python虚拟环境的重要性和基本操作。
|
2月前
|
算法 数据可视化 计算机视觉
Python中医学图像处理常用的库
在Python中,医学图像处理常用的库包括:ITK(及其简化版SimpleITK)、3D Slicer、Pydicom、Nibabel、MedPy、OpenCV、Pillow和Scikit-Image。这些库分别擅长图像分割、配准、处理DICOM和NIfTI格式文件、图像增强及基础图像处理等任务。选择合适的库需根据具体需求和项目要求。
97 0
|
2月前
|
数据挖掘 计算机视觉 Python
基于Python的简单图像处理技术
【10月更文挑战第4天】在数字时代,图像处理已成为不可或缺的技能。本文通过Python语言,介绍了图像处理的基本方法,包括图像读取、显示、编辑和保存。我们将一起探索如何使用PIL库进行图像操作,并通过实际代码示例加深理解。无论你是编程新手还是图像处理爱好者,这篇文章都将为你打开一扇新窗,让你看到编程与创意结合的无限可能。
WK
|
4月前
|
计算机视觉 Python
如何使用OpenCV进行基本图像处理
使用OpenCV进行基本图像处理包括安装OpenCV,读取与显示图像,转换图像颜色空间(如从BGR到RGB),调整图像大小,裁剪特定区域,旋转图像,以及应用图像滤镜如高斯模糊等效果。这些基础操作是进行更复杂图像处理任务的前提。OpenCV还支持特征检测、图像分割及对象识别等高级功能。
WK
55 4
|
4月前
|
计算机视觉 开发者 Python
使用Python进行简单图像处理
【8月更文挑战第31天】 本文将介绍如何使用Python编程语言来处理图像。我们将通过代码示例来展示如何读取、显示、编辑和保存图像文件。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供一个清晰的指引,帮助你开始自己的图像处理项目。
|
4月前
|
算法 定位技术 vr&ar
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
700 0
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
下一篇
DataWorks