基于VGG16深度学习网络的目标识别matlab仿真,并结合ROC指标衡量识别性能

简介: 基于VGG16深度学习网络的目标识别matlab仿真,并结合ROC指标衡量识别性能

1.算法仿真效果
matlab2022a仿真结果如下:

ff2aab92b371aeb3e9b5277a38d36268_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
6acc1cce99d914a0f96db7c8346be7f1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
根据卷积核大小和卷积层数,VGG共有6中配置,分别为A,A-LRN,B,C,D,E,其中D和E两种最为常用,即i我们所说的VGG16和VGG19。

具体为:

  1. 卷积-卷积-池化-卷积-卷积-池化-卷积-卷积-卷积-池化-卷积-卷积-卷积-池化-卷积-卷积-卷积-池化-全连接-全连接-全连接 。

  2. 通道数分别为64,128,512,512,512,4096,4096,1000。卷积层通道数翻倍,直到512时不再增加。通道数的增加,使更多的信息被提取出来。全连接的4096是经验值,当然也可以是别的数,但是不要小于最后的类别。1000表示要分类的类别数。

  3. 所有的激活单元都是Relu 。

  4. 用池化层作为分界,VGG16共有6个块结构,每个块结构中的通道数相同。因为卷积层和全连接层都有权重系数,也被称为权重层,其中卷积层13层,全连接3层,池化层不涉及权重。所以共有13+3=16权重层。

  5. 对于VGG16卷积神经网络而言,其13层卷积层和5层池化层负责进行特征的提取,最后的3层全连接层负责完成分类任务。

      vgg16总共有16层,13个卷积层和3个全连接层,第一次经过64个卷积核的两次卷积后,采用一次pooling,第二次经过两次128个卷积核卷积后,再采用pooling,再重复两次三个512个卷积核卷积后,再pooling,最后经过三次全连接。如下图所示:
    

image.png

VGG优点

   VGGNet的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。几个小滤波器(3x3)卷积层的组合比一个大滤波器(5x5或7x7)卷积层好:验证了通过不断加深网络结构可以提升性能。

VGG缺点
VGG耗费更多计算资源,并且使用了更多的参数(这里不是3x3卷积的锅),导致更多的内存占用(140M)。其中绝大多数的参数都是来自于第一个全连接层。VGG可是有3个全连接层啊!

3.MATLAB核心程序
```train_P = [];
train_T = [];
test_P = [];
test_T = [];

for i=1:length(types)
i
types{i}
trainingImages = imageDatastore(['images/train/' types{i}],'IncludeSubfolders',true,'LabelSource','foldernames');
testImages = imageDatastore(['images/test/' types{i}],'IncludeSubfolders',true,'LabelSource','foldernames');
augimdsTrain = augmentedImageDatastore(inputSize(1:2),trainingImages);
augimdsTest = augmentedImageDatastore(inputSize(1:2),testImages);
trainingFeatures = activations(net,augimdsTrain,'fc8','OutputAs','channels');
testFeatures = activations(net,augimdsTest,'fc8','OutputAs','channels');
train_P = [train_P;squeeze(trainingFeatures(1,1,:,:))'];
train_T = [train_T;trainingImages.Labels];
test_P = [test_P;squeeze(testFeatures(1,1,:,:))'];
test_T = [test_T;testImages.Labels];
end

nest = fitcecoc(train_P,train_T);
[predictedLabels scores]= predict(nest,test_P);
accuracy = mean(predictedLabels == test_T);
targets = zeros(size(scores'));
for i=1:size(test_T,1)
I = find(types==test_T(i));
targets(I(1),i) = 1;
end
cmat = confusionmat(test_T,predictedLabels);
figure;
imagesc(cmat);
xlabel('Target Class');
ylabel('Predicted Class');
title(['VGG16 accuracy= ' num2str(100*accuracy),'%']);
colorbar
figure;
plotroc(targets,scores')
```

相关文章
|
1天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
14 6
|
3天前
|
机器学习/深度学习 算法 索引
m基于Qlearning强化学习的小车倒立摆控制系统matlab仿真
在MATLAB 2022a中模拟的Q-learning倒立摆控制显示出稳定平衡效果。Q-learning算法通过智能体与环境交互学习最佳控制策略,以维持摆杆直立。算法基于状态s和动作a更新Q值表,目标是最大化未来奖励。系统状态包括小车位置、速度、杆角度及角速度。动作是小车加速度。当状态或动作空间大时,用神经网络近似Q函数,DQN通过经验回放和目标网络稳定学习。核心代码涉及状态更新、贪婪策略选择动作及环境反馈,实时更新摆杆和小车位置。
16 6
|
1天前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。
|
1天前
|
机器学习/深度学习 算法 计算机视觉
基于ADAS的车道线检测算法matlab仿真
**摘要:** 基于ADAS的车道线检测算法利用Hough变换和边缘检测在视频中识别车道线,判断车道弯曲情况,提供行驶方向信息,并高亮显示。在MATLAB2022a中实现,系统包括图像预处理(灰度化、滤波、边缘检测)、车道线特征提取(霍夫变换、曲线拟合)和车道线跟踪,确保在实时场景中的准确性和稳定性。预处理通过灰度转换减少光照影响,滤波去除噪声,Canny算法检测边缘。霍夫变换用于直线检测,曲线拟合适应弯道,跟踪则增强连续帧的车道线检测。
|
2天前
|
机器学习/深度学习 搜索推荐 Python
深度学习在医学影像诊断中的应用正在改变医学诊断的方式
深度学习在医学影像诊断中的应用正在改变医学诊断的方式
|
1天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第50天】 随着人工智能技术的迅猛发展,深度学习已成为推动多个领域进步的关键力量。特别是在图像识别领域,深度学习模型如卷积神经网络(CNN)已表现出超越传统算法的性能。本文将探讨深度学习技术在自动驾驶系统中图像识别的实际应用,分析其在提高道路安全性和车辆自主性方面的潜力,并讨论面临的主要挑战及未来的发展方向。
|
2天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用
随着人工智能技术的飞速发展,深度学习已成为图像识别领域的核心技术之一。本文将探讨深度学习如何革新图像识别技术,包括其基本原理、关键技术以及在不同场景下的应用案例。我们将深入分析卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型在图像处理中的作用,并讨论当前面临的挑战与未来的发展方向。
|
2天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
随着人工智能技术的飞速发展,深度学习已成为推动多个领域革新的核心力量。特别是在图像识别领域,深度学习技术通过其强大的特征提取和模式识别能力,极大地提高了图像处理的准确性和效率。本文将探讨深度学习在图像识别中的应用现状,包括其在面部识别、自动驾驶车辆的视觉系统以及医学影像分析中的具体应用案例。同时,我们也将讨论目前面临的主要挑战,如数据集偏差、算法的可解释性问题、以及在资源受限设备上的部署问题等。
|
3天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【6月更文挑战第17天】本文旨在探讨深度学习技术在图像识别领域的应用及其面临的挑战。通过分析深度学习的基本原理和关键技术,我们深入讨论了其在图像处理中的创新应用,包括面部识别、物体检测等。同时,文章也指出了深度学习在实际应用过程中遇到的诸如数据偏差、模型泛化能力不足等问题,并对未来的发展趋势进行了展望。
|
3天前
|
机器学习/深度学习 算法 自动驾驶
深度学习在图像识别中的应用与挑战
【6月更文挑战第17天】随着人工智能技术的飞速发展,深度学习已成为推动图像识别技术革新的核心力量。本文旨在深入探讨深度学习在图像识别领域的应用现状、面临的主要挑战以及未来的发展趋势。通过分析卷积神经网络(CNN)的工作原理及其在图像识别任务中的实际应用案例,揭示深度学习如何提高图像处理的准确性和效率。同时,文章也将讨论数据偏差、模型泛化能力不足等挑战,并展望深度学习技术的未来发展方向。

热门文章

最新文章