【OpenVI—通用检测系列之视频目标检测】(ICASSP 2023) 针对流感知的长短支路网络 LongShortNet

本文涉及的产品
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
简介: ● 论文链接:https://arxiv.org/abs/2210.15518

一、背景介绍


     传统视频目标检测(Video Object Detection, VOD)任务以一段视频作为输入,利用视频的时序信息进行目标检测,并最终输出每一帧视频帧的检测结果。其相比图像目标检测(Image Object Detection, IOD)任务,优势在于能够利用视频的时序信息,对运动模糊、图像失焦、遮挡、物体姿态变化等困难的场景具有更强的鲁棒性。然而,传统的VOD和IOD都是离线(offline)的检测,即仅考虑算法的检测精度,未考虑算法的延时

为了更加贴近现实场景,ECCV 2020 论文《Towards Streaming Perception》[1](获得Best Paper Honorable Mention)首次提出了流感知(Streaming Perception)任务,该任务作为VOD的一个细分方向,提出了流平均精度(Streaming Average Precision, sAP)指标,衡量算法的在线(online)检测能力,即同时衡量算法的精度和延时。具体地,如下图所示,离线目标检测算法对T时刻的视频帧进行检测,得到轿车检测结果,即橙色的矩形框,而因为算法处理存在一定的延时,此时现实环境已经处于T+Latency时刻,轿车的实际位置也已经发生变化,即红色的矩形框。由此可见,实际应用中,算法进行目标检测时,应同时考虑环境变化,这正是在线检测(如Streaming Perception任务)考虑的事情,这一类的算法在T时刻的检测结果,橙色的矩形框,与T+Latency时刻的实际环境,红色的矩形框,能有较好的吻合。

image.png

图1 离线检测与在线检测对比


二、技术难点


     早期的方法如Streamer[1]和Adaptive Streamer[2]尝试通过提出一些策略,来进行精度和延时之间的平衡,但是这些方法精度较低。CVPR 2022 oral工作StreamYOLO[3]通过引入强大的实时目标检测器YOLOX[4],将Streaming Perception任务简化为一个预测任务。

     为了更好地理解为什么引入实时目标检测器能够简化Streaming Perception任务,需要先介绍一下此任务的评价指标。流平均精度(Streaming Average Precision, sAP)可以分为两个部分理解,其中"Average Precision"和通用检测一致,而"Streaming"表示,某个时刻的预测结果,会与算法处理完成后下一时刻的真实值(Ground True, GT)匹配,并计算对应的"Average Precision"。具体地,如下图所示,对于非实时的算法 I时刻的预测结果在下一时刻 It+1 到来之后才能得到,如下图左半部分绿色箭头所示,因此与该预测结果配对的是It+2 时刻的GT,而It+1 时刻的GT,会默认使用前一次预测结果进行配对,这样一来,算法一方面“错过”了 It+1 时刻的GT,另一方面需要预测更“远”的It+2 时刻的真实环境,因此对算法的挑战更大。相对地,对于实时的算法, I时刻的预测结果在下一时刻 It+1 到来之前可以得到,如下图右半部分绿色箭头所示,因此与该预测结果配对的是It+1时刻的GT,该情况下,算法一方面不会“错过”任何时刻的GT,另一方面仅需要预测下一时刻的真实环境。因此说,引入实时算法能够简化Streaming Perception任务为一个对下一帧真实环境的预测任务。

image.png

图2 非实时方法和实时方法的评估示意图

虽然StreamYOLO简化了Streaming Perception任务,但是它仅使用当前帧和前一帧两帧的短时序信息作为输入,难以表征一些复杂的运动状态。如下图(a)所示,在实际自动驾驶环境中,经常会出现以下的,除了匀速直线运动以外的运动状态以及情况:1)非匀速运动(比如加速超车);2)非直线运动(比如转弯);3)遮挡以及小目标。


因此,本文的研究专注于探索如何在Streaming Perception任务中引入长时序信息,以及如何进行时序信息融合,并最终提出了LongShortNet,如下图(b)所示,本文提出的LongShortNet在一些困难场景下,能够达到比StreamYOLO更高的精度。

image.png

图3 特殊运动状态示意图

1679933291841-edef9c98-f3da-4d82-b188-854bbc4170c4.gif

特殊运动状态示例

三、方法介绍


     LongShortNet的整体结构如下图所示,该方法具有如下的特点:

图4 LongShortNet和LSFM示意图


  1. 提出一种双支路的网络结构,在Streaming Perception领域首次引入了长时序信息。包括短支路(Short Path)和长支路(Long Path),其中短支路用于提取当前视频帧的空间信息,而长支路以历史帧作为输入,用于提取时序信息。其中, N δt 是两个可调节的参数,N用于控制历史帧的数量,δt 用于控制历史帧的间隔步长。
  2. 探索不同的时序融合方式。本文提出了长短融合模块(Long Short Fusion Module, LSFM),探索了1)早融合(early fusion)和晚融合(late fusion);2)时序上不同的重要性分配。具体有如上图(b)所示的四种模块。同时,本文与已有的一些注意力模块也进行了对比。
  3. 提出多帧buffer机制。本文对StreamYOLO方法的buffer机制进行了改进,使其适用于多帧的情况,确保算法保持实时性,简化Streaming Perception任务为时序预测任务。

四、实验结果


     本文基于Streaming Perception任务的公开数据集,Argoverse-HD[1],进行算法实验,并与StreamYOLO等工作保持相同的训练/验证集划分。本文同样使用YOLOX作为基础网络结构,并同样使用small/middle/large三种尺寸的网络,分别对应LongShortNet-S/LongShortNet-M/LongShortNet-L。


SOTA对比


     首先,与目前SOTA方法的对比如下表所示,LongShortNet在常规分辨率((600, 960))下,取得了37.1%的sAP,而在高分辨率((1200, 1920))下,取得了42.7%的sAP,均超过了目前的SOTA精度。

image.png

表1 与SOTA对比

消融实验


     本文对 Nδt 的取值进行了消融实验,结果如下表所示,在 N=3 δt =1 时,S/M/L模型均能取得比较好的结果。其中,(1, 1)等价于StreamYOLO,由此可见,引入长时序信息有助于算法对复杂运动的预测,从而提升最终的精度。

image.png

表2 N和delta t消融实验

     本文同时对四种不同的LSFM模块进行了对比实验,如下表所示,LSFM-Lf-Dil取得了最高的精度,说明晚融合和对当前帧保持更大的通道权重,更有利于时空信息的融合。

image.png

表3 LSFM模块消融实验

     当然,当前帧的通道权重也并非越大越好,如下表所示,通道膨胀权重(dilation channel ratio)取0.5时取得最优结果,更大的权重精度反而下降了。

image.png

表4 通道膨胀权重对比实验


     另外,本文还将LSFM与现有的注意力方法进行了对比,在LSFM的基础上,加入不同的注意力模块。如下表所示,原始的LSFM取得了最优的结果,且在速度上更有优势。本文并不否认注意力机制的作用,只是其作用可能需要在具备更大规模的数据集和更长时序输入的条件下,才能得到更好的体现。

image.png

表5 不同注意力方法对比

     最后,本文对LongShortNet的效率进行了分析,如下表所示,LongShortNet相比StreamYOLO,增加的推理耗时和运算量几乎可以忽略。

image.png

表6 效率分析

五、参考文献


  • [1] M. Li and D. Ramanan, “Towards streaming perception,” in ECCV, 2020, vol. 12347, pp. 473–488.

  • [2] A. Ghosh, A. Nambi, A. Singh, and et al., “Adaptive streaming perception using deep reinforcement learning,” CoRR, vol. abs/2106.05665, 2021.

  • [3] J. Yang, S. Liu, Z. Li, and et al., “Real-time object detection for streaming perception,” in CVPR, 2022, pp. 5385–5395.

  • [4] Z. Ge, S. Liu, F. Wang, and et al., “YOLOX: exceeding YOLO series in 2021,” CoRR, vol. abs/2107.08430, 2021.

六、详情体验


想了解更多信息,详情见阿里云——视觉智能开放平台

相关文章
|
3月前
|
JSON 监控 API
在线网络PING接口检测服务器连通状态免费API教程
接口盒子提供免费PING检测API,可测试域名或IP的连通性与响应速度,支持指定地域节点,适用于服务器运维和网络监控。
|
3月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
83 2
|
4月前
|
机器学习/深度学习 算法 5G
基于DNN深度神经网络的OFDM+QPSK信号检测与误码率matlab仿真
本内容展示了基于深度神经网络(DNN)的OFDM-QPSK信号检测算法在Matlab2022a中的仿真效果。通过构建包含多层全连接层和ReLU激活函数的DNN模型,结合信号预处理与特征提取,实现了复杂通信环境下的高效信号检测。仿真结果对比了传统LS、MMSE方法与DNN方法在不同信噪比(SNR)条件下的误码率(BER)和符号错误率(SER),验证了DNN方法的优越性能。核心程序涵盖了QPSK调制、导频插入、OFDM发射、信道传输及DNN预测等关键步骤,为现代通信系统提供了可靠的技术支持。
66 0
|
6月前
|
SQL 数据采集 人工智能
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
238 12
|
6月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
174 8
|
7月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
7月前
|
机器学习/深度学习 数据采集 算法
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
|
10月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
226 17
|
10月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
179 10
|
10月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章