架构日记 - 资源成本控制

简介: 架构日记 - 资源成本控制

此日记来自何老师的一句话 - 现在很多人在做架构设计的时候往往是为了技术而架构,简单问题复杂化!


架构师需要在完成系统需求,系统性能和可用性的前提下使得后端资源尽量少,使得硬件投入尽量少,运营成本尽量低!


这里我们抽取出架构师的核心两职责:

1. 完成系统功能性需求和非功能性需求

2. 控制资源成本


很多架构师往往只记住了第一点而忽视了第二点,在做设计时会把架构做的相对复杂,让系统看起来非常"高大上"。但是复杂的架构往往意味着需要更多的资源,更多的成本!


很多开源项目上来就是Oauth2认证中心,各种中间件,确实很炫酷!而我也相信这些作者能hold住各种中间件带来的系统复杂性。


但是架构师们真正做自己项目的时候还是要做个取舍,是否真的需要做的如此复杂?换个实现方式是不是更能节省资源成本?


此日记为临时有感而发,手机码字,各位架构师们2021共勉!


最后祝大家新年快乐,阖家辛福!


附上一张老家的风景图。


目录
相关文章
|
6月前
|
XML 运维 前端开发
LAMP架构调优(四)——资源压缩传输
LAMP架构调优(四)——资源压缩传输
37 2
|
6月前
|
存储 Kubernetes 负载均衡
Kubernetes的“厨房”:架构是菜谱,组件是厨具,资源对象是食材(下)
本文深入探讨了Kubernetes(K8s)的架构、核心组件以及资源对象。Kubernetes作为一个开源的容器编排系统,通过其独特的架构设计和丰富的组件,实现了对容器化应用程序的高效管理和扩展。通过本文的介绍,读者可以深入了解Kubernetes的架构、核心组件以及资源对象,从而更好地应用和管理容器化应用程序。Kubernetes的灵活性和可扩展性使得它成为容器编排领域的领先者,为企业提供了强大的容器运行环境。
|
11天前
|
运维 监控 Serverless
利用Serverless架构优化成本和可伸缩性
【10月更文挑战第13天】Serverless架构让开发者无需管理服务器即可构建和运行应用,实现成本优化与自动扩展。本文介绍其工作原理、核心优势及实施步骤,探讨在Web应用后端、数据处理等领域的应用,并分享实战技巧。
|
14天前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
41 3
|
24天前
|
机器学习/深度学习 存储 人工智能
用60%成本干80%的事,DeepSeek分享沉淀多年的高性能深度学习架构
【10月更文挑战第2天】近年来,深度学习(DL)与大型语言模型(LLMs)的发展推动了AI的进步,但也带来了计算资源的极大需求。为此,DeepSeek团队提出了Fire-Flyer AI-HPC架构,通过创新的软硬件协同设计,利用10,000个PCIe A100 GPU,实现了高性能且低成本的深度学习训练。相比NVIDIA的DGX-A100,其成本减半,能耗降低40%,并在网络设计、通信优化、并行计算和文件系统等方面进行了全面优化,确保系统的高效与稳定。[论文地址](https://arxiv.org/pdf/2408.14158)
45 4
|
3月前
|
Cloud Native 安全 中间件
核心系统转型问题之云原生架构下的基础资源设施应重点考虑什么方面
核心系统转型问题之云原生架构下的基础资源设施应重点考虑什么方面
|
3月前
|
监控 持续交付 开发者
资源紧张下的创新之道:揭秘高效可扩展架构的设计秘诀,让技术与成本达到完美平衡!
【8月更文挑战第22天】在科技行业的快节奏发展中,设计出经济高效且可扩展的架构是每位工程师面临的挑战。本文提出五大策略:精准需求分析确保目标清晰;模块化设计如微服务架构促进独立开发与扩展;选择成熟技术栈及利用云服务提升系统效能;实施自动化流程如CI/CD加速开发周期;建立全面监控体系保障系统健康。遵循设计原则如SOLID,结合这些策略,即便资源有限也能构建出高质量、灵活应变的系统。
43 0
|
3月前
|
机器学习/深度学习 分布式计算 Cloud Native
云原生架构下的高性能计算解决方案:利用分布式计算资源加速机器学习训练
【8月更文第19天】随着大数据和人工智能技术的发展,机器学习模型的训练数据量和复杂度都在迅速增长。传统的单机训练方式已经无法满足日益增长的计算需求。云原生架构为高性能计算提供了新的可能性,通过利用分布式计算资源,可以在短时间内完成大规模数据集的训练任务。本文将探讨如何在云原生环境下搭建高性能计算平台,并展示如何使用 PyTorch 和 TensorFlow 这样的流行框架进行分布式训练。
114 2
|
3月前
|
运维 Kubernetes 大数据
Kubernetes 的架构问题之在Serverless Container场景下尚不支持资源超售如何解决
Kubernetes 的架构问题之在Serverless Container场景下尚不支持资源超售如何解决
60 0
|
3月前
|
存储 缓存 安全
MPP架构数据仓库使用问题之DADI相比其他方案,在资源使用上有什么优势
MPP架构数据仓库使用问题之DADI相比其他方案,在资源使用上有什么优势

热门文章

最新文章