【Kafka从入门到放弃系列 三】Kafka架构深入——工作流程和存储机制

简介: 【Kafka从入门到放弃系列 三】Kafka架构深入——工作流程和存储机制

上一篇blog亲手搭建了一个kafka的分布式集群【Kafka从入门到放弃系列 二】Kafka集群搭建并且成功的发送和消费消息,初步验证了Kafka的功能,接下来会在第一篇【Kafka从入门到放弃系列 一】概述及基本架构的简单理论和第二篇的实践基础之上,开始深入探讨Kafka的架构和一些策略,本篇blog重点介绍全流程以及文件存储机制,接下来的几篇分别介绍下生产者策略、消费者策略和一些高级特性

Kafka工作流程

通过基础概念的学习可以知道kafka的消息分为Topic,而Topic从逻辑上又可以划分为Partion,关于Topic&Partion需要注意以下几点:

  • 一个 Topic可以认为是一类消息,每个 topic 将被分成多个 Partion,每个 Partion在存储层面是 append log 文件。
  • 任何发布到partition 的消息都会被追加到log文件的尾部,每条消息在文件中的位置称为 offset(偏移量),offset 为一个 long 型的数字,它唯一标记一条消息

  • Kafka 机制中,producer push 来的消息是追加(append)到 Partion中的,这是一种顺序写磁盘的机制,效率远高于随机写内存
  • 消费者组中的每个消费者,都会实时记录自己消费到了哪个 offset,以便出错恢复时,从上次的位置继续消费
  • Kafka只保证Partion内的消息有序,不能保证全局Topic的消息有序

整体的流程如下图所示:

那么为什么有分区的概念呢?主要还是为了我们分布式的一切中间件的共同特性:负载均衡&水平扩展,Topic 只是逻辑概念,面向的是 producer 和 consumer;而 Partition 则是物理概念。可以想象,如果 Topic 不进行分区,而将 Topic 内的消息存储于一个 broker,那么关于该 Topic 的所有读写请求都将由这一个 broker 处理,吞吐量很容易陷入瓶颈,这显然是不符合高吞吐量应用场景的。所以一定是需要分区来将流量分发到不同的服务器上去的

Kafka文件存储机制

当然即使是对一个Partition 而言,如果消息量过大的话也会有堵塞的风险,所以我们需要定期清理消息,当然是从旧的开始清理,如果只有一个Partion,那么就得全盘清除,这将对消息文件的维护以及已消费的消息的清理带来严重的影响。所以我们需要在物理上进一步细分Partition 。因此,需以 segment 为单位将 partition 进一步细分,每个 partition(目录)相当于一个巨型文件被平均分配到多个大小相等的 segment(段)数据文件中(每个 segment 文件中消息数量不一定相等)这种特性也方便 old segment 的删除,即方便已被消费的消息的清理,提高磁盘的利用率。每个 partition 只需要支持顺序读写就行。

Partition&Segment

接下来我们发送一条消息,看看在物理存储上是什么样的:

三个消息:hello、dashuaige、hhh。打开存储目录可以看到,在103机器上,一组index和log,这就是一个segment的内容

segment 文件由两部分组成,分别为 “.index” 文件和 “.log” 文件,分别表示为 segment 索引文件和数据文件。这两个文件的命令规则为:partition 全局的第一个 segment 从 0 开始,后续每个 segment 文件名为上一个 segment 文件最后一条消息的 offset 值,数值大小为 64 位,20 位数字字符长度,没有数字用 0 填充,我这里只有一条数据,所以是从0开始的,打开log文件可以看到:

虽然是乱码的,但是隐约可以看到顺序发送的消息。整体的存储架构如下:

Segment存储结构

通过以上对Segment落盘文件的了解,我们基本搞清楚了Segment的结构,当然我这里是单segment,看不出来。这里从网上找了一个大量文件的示例:

//第一段segment,起始位置为0
00000000000000000000.index
00000000000000000000.log
//第一段segment,起始位置为170410
00000000000000170410.index
00000000000000170410.log
//第一段segment,起始位置为239430
00000000000000239430.index
00000000000000239430.log

以上面的 segment 文件为例,展示出 segment:00000000000000170410 的 “.index” 文件和 “.log” 文件的对应的关系,如下图:

如上图,“.index” 索引文件存储大量的元数据,“.log” 数据文件存储大量的消息,索引文件中的元数据指向对应数据文件中 message 的物理偏移地址。其中以 “.index” 索引文件中的元数据 [3, 348] 为例,在 “.log” 数据文件表示第 3 个消息,即在全局 partition 中表示 170410+3=170413 个消息,该消息的物理偏移地址为 348【注意此物理偏移地址不是offset,全局offset为170413 】

快速定位partion中消息

既然消息在Partion中被分为了一段段的segment,那么我们如何快速定位消息的位置,来精准的对消息进行操作呢?以上图为例,读取 offset=170418 的消息:

  • 首先查找 segment 文件,其中 00000000000000000000.index 为最开始的文件,第二个文件为 00000000000000170410.index(起始偏移为 170410+1=170411),而第三个文件为 00000000000000239430.index(起始偏移为 239430+1=239431),所以这个 offset=170418 就落到了第二个文件之中。其它后续文件依次类推,以其偏移量命名并排列这些文件,然后根据二分查找法就可以快速定位到具体文件位置。
  • 其次根据 00000000000000170410.index 文件中的170418 -170410=8,得出是该segment 中的第8个消息,再次依据二分查找法定位到该索引,得到**[消息偏移量,物理偏移量]**坐标 [8,1325] 定位到 00000000000000170410.log 文件中的 1325 的位置进行读取。
  • 找到1325位置后,顺序读取消息即可,确定读完本条消息【本条消息读到哪里结束】由消息的物理结构解决,消息都具有固定的物理结构,包括:offset(8 Bytes)、消息体的大小(4 Bytes)、crc32(4 Bytes)、magic(1 Byte)、attributes(1 Byte)、key length(4 Bytes)、key(K Bytes)、payload(N Bytes)等等字段,可以确定一条消息的大小,即读取到哪里截止。

以上就是定位消息的详细方法,通过索引的方式,可以在kafka顺序写磁盘的基础上仍然能快速的找到对应的消息。

本篇blog讲解了Kafka的工作流程和存储机制,其实对于Kafka而言,更多的策略体现在生产者和消费者端,接下来的两篇blog我们分别介绍下生产者策略和消费者策略

部分内容参考 https://gitbook.cn/books/5ae1e77197c22f130e67ec4e/index.html

相关文章
|
3月前
|
存储 缓存 关系型数据库
鱼和熊掌如何兼得?一文解析RDS数据库存储架构升级
阿里云RDS率先推出新型存储类型通用云盘,提供低延迟、低成本、高持久性的用户体验。
鱼和熊掌如何兼得?一文解析RDS数据库存储架构升级
|
1月前
|
消息中间件 存储 缓存
Kafka【基础知识 01】消息队列介绍+Kafka架构及核心概念(图片来源于网络)
【2月更文挑战第20天】Kafka【基础知识 01】消息队列介绍+Kafka架构及核心概念(图片来源于网络)
94 2
|
3月前
|
消息中间件 存储 设计模式
Kafka原理篇:图解kakfa架构原理
Kafka原理篇:图解kakfa架构原理
74 1
|
21天前
|
运维 负载均衡 网络协议
探索微服务架构下的服务发现机制
【4月更文挑战第6天】 随着现代软件工程的发展,微服务架构因其灵活性、可扩展性而日益受到重视。在此架构模式下,服务发现成为了确保系统高可用性和弹性的关键组件。本文将深入探讨微服务环境中服务发现的核心概念、实现方式以及面临的挑战,旨在为开发者提供一套明晰的服务发现指南和实践建议。
|
29天前
|
存储 监控 安全
金石推荐 | 【分布式技术专题】「单点登录技术架构」一文带领你好好认识以下Saml协议的运作机制和流程模式
金石推荐 | 【分布式技术专题】「单点登录技术架构」一文带领你好好认识以下Saml协议的运作机制和流程模式
64 1
|
1月前
|
存储 Kubernetes 固态存储
IEEE HPCA 2024|LightPool:高性能、轻量级的存储池化架构
IEEE HPCA 2024|LightPool:高性能、轻量级的存储池化架构
|
1月前
|
存储 监控 容灾
TiDB存储层深入:分布式存储架构与数据一致性保障
【2月更文挑战第26天】本文将深入探讨TiDB的存储层,详细解析其分布式存储架构、数据复制机制以及数据一致性保障措施。通过了解存储层的核心组件和工作原理,我们可以更好地理解TiDB如何确保数据的可靠性、高可用性和可扩展性。本文将从存储层的架构、数据分布、容错机制等方面展开介绍,帮助读者全面掌握TiDB存储层的关键技术和优势。
|
1月前
|
敏捷开发 缓存 负载均衡
微服务架构下的服务发现与注册机制
【2月更文挑战第21天】 随着现代应用向微服务架构转型,服务的数量和复杂性不断增加。在这种环境下,有效的服务发现与注册机制成为确保系统可伸缩性和高可用性的关键。本文深入探讨了微服务架构中服务发现的基本原则、常用模式及其实现技术,同时分析了服务注册的流程和优势。文章旨在为开发者提供一个清晰的指引,帮助他们在构建分布式系统时做出明智的设计选择。
|
1月前
|
存储 负载均衡 Java
【Spring底层原理高级进阶】微服务 Spring Cloud 的注册发现机制:Eureka 的架构设计、服务注册与发现的实现原理,深入掌握 Ribbon 和 Feign 的用法 ️
【Spring底层原理高级进阶】微服务 Spring Cloud 的注册发现机制:Eureka 的架构设计、服务注册与发现的实现原理,深入掌握 Ribbon 和 Feign 的用法 ️